SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Zhou Qi)) srt2:(2020-2024) srt2:(2024)"

Search: (WFRF:(Zhou Qi)) srt2:(2020-2024) > (2024)

  • Result 1-10 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Huang, Qi, et al. (author)
  • A method for generating case-specific vehicle models from a single-view vehicle image for accurate pedestrian injury reconstructions
  • 2024
  • In: Accident Analysis and Prevention. - : Elsevier BV. - 0001-4575 .- 1879-2057. ; 200
  • Journal article (peer-reviewed)abstract
    • Developing vehicle finite element (FE) models that match real accident-involved vehicles is challenging. This is related to the intricate variety of geometric features and components. The current study proposes a novel method to efficiently and accurately generate case-specific buck models for car-to-pedestrian simulations. To achieve this, we implemented the vehicle side-view images to detect the horizontal position and roundness of two wheels to rectify distortions and deviations and then extracted the mid-section profiles for comparative calculations against baseline vehicle models to obtain the transformation matrices. Based on the generic buck model which consists of six key components and corresponding matrices, the case-specific buck model was generated semi-automatically based on the transformation metrics. Utilizing this image-based method, a total of 12 vehicle models representing four vehicle categories including family car (FCR), Roadster (RDS), small Sport Utility Vehicle (SUV), and large SUV were generated for car-to-pedestrian collision FE simulations in this study. The pedestrian head trajectories, total contact forces, head injury criterion (HIC), and brain injury criterion (BrIC) were analyzed comparatively. We found that, even within the same vehicle category and initial conditions, the variation in wrap around distance (WAD) spans 84–165 mm, in HIC ranges from 98 to 336, and in BrIC fluctuates between 1.25 and 1.46. These findings highlight the significant influence of vehicle frontal shape and underscore the necessity of using case-specific vehicle models in crash simulations. The proposed method provides a new approach for further vehicle structure optimization aiming at reducing pedestrian head injury and increasing traffic safety.
  •  
2.
  • Huang, Qi, et al. (author)
  • Effectiveness of energy absorbing floors in reducing hip fractures risk among elderly women during sideways falls
  • 2024
  • In: Journal of The Mechanical Behavior of Biomedical Materials. - : Elsevier BV. - 1751-6161 .- 1878-0180. ; 157
  • Journal article (peer-reviewed)abstract
    • Falls among the elderly cause a huge number of hip fractures worldwide. Energy absorbing floors (EAFs) represent a promising strategy to decrease impact force and hip fracture risk during falls. Femoral neck force is an effective predictor of hip injury. However, the biomechanical effectiveness of EAFs in terms of mitigating femoral neck force remains largely unknown. To address this, a whole-body computational model representing a small-size elderly woman with a biofidelic representation of the soft tissue near the hip region was employed in this study, to measure the attenuation in femoral neck force provided by four commercially available EAFs (Igelkott, Kradal, SmartCells, and OmniSports). The body was positioned with the highest hip force with a -10 degrees trunk angle and +10 degrees degrees anterior pelvis rotation. At a pelvis impact velocity of 3 m/s, the peak force attenuation provided by four EAFs ranged from 5% to 19%. The risk of hip fractures also demonstrates a similar attenuation range. The results also exhibited that floors had more energy transferred to their internal energy demonstrated greater force attenuation during sideways falls. By comparing the biomechanical effectiveness of existing EAFs, these results can improve the floor design that offers better protection performance in high-fall-risk environments for the elderly.
  •  
3.
  • Ayala, Maddalen, et al. (author)
  • A supply-chain perspective on producing and upscaling bioplastic from cultivated brown seaweed
  • 2024
  • In: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526 .- 1879-1786. ; 444
  • Journal article (peer-reviewed)abstract
    • Plastic pollution is an environmental emergency and finding sustainable alternatives to traditional plastics has become a pressing need. Seaweed-based bioplastic has emerged as a promising solution, as it is biodegradable and made from renewable biomass, while seaweed cultivation itself provides various environmental benefits. However, the feasibility of implementing a brown seaweed-based bioplastic supply chain in a realistic setting remains unclear, as previous research focused either on single processing steps or on virtual supply chains aggregating data from different studies. This study describes a case study for seaweed-based bioplastic within the PlastiSea research project: from seaweed cultivation to biomass processing and bioplastic and composite material development at the lab and pilot scale, thus providing insights into its feasibility. Adopting a multidisciplinary approach, the study employs multiple methods to characterize each stage in the supply chain and provides an overall life cycle assessment (LCA) as well as lessons learned throughout the process. The analysis showed potential for producing and utilizing multiple co-products from the same seaweed source, including biopolymer extracts with varying degrees of refinement for use in low-cost (bioplastic films) and high-cost (microfiber composites) applications. The use of residual biomass as a source of alginates for producing bioplastics offers a low-cost and sustainable biomass supply currently not competing with other markets. The LCA results indicate the potential for reducing the environmental impact of seaweed-based bioplastic production through upscaling and increasing process efficiency.
  •  
4.
  • Carreno-Quintero, Natalia, et al. (author)
  • Non-targeted discovery of high-value bio-products in Nicotiana glauca L : a potential renewable plant feedstock
  • 2024
  • In: Bioresources and bioprocessing. - : Springer Nature. - 2197-4365. ; 11:1
  • Journal article (peer-reviewed)abstract
    • The evaluation of plant-based feedstocks is an important aspect of biorefining. Nicotiana glauca is a solanaceous, non-food crop that produces large amounts of biomass and is well adapted to grow in suboptimal conditions. In the present article, compatible sequential solvent extractions were applied to N. glauca leaves to enable the generation of enriched extracts containing higher metabolite content comparing to direct leaf extracts. Typically, between 60 to 100 metabolite components were identified within the fractions. The occurrence of plant fatty acids, fatty acid alcohols, alkanes, sterols and terpenoids was detected by gas liquid chromatography-mass spectrometry (GC-MS) and metabolite identification was confirmed by comparison of physico-chemical properties displayed by available authentic standards. Collectively, co-products such waxes, oils, fermentable sugars, and terpenoids were all identified and quantified. The enriched fractions of N. glauca revealed a high level of readily extractable hydrocarbons, oils and high value co-products. In addition, the saccharification yield and cell wall composition analyses in the stems revealed the potential of the residue material as a promising lignocellulosic substrate for the production of fermentable sugars. In conclusion a multifractional cascade for valuable compounds/commodities has been development, that uses N. glauca biomass. These data have enabled the evaluation of N. glauca material as a potential feedstock for biorefining.
  •  
5.
  • He, Mao Qiang, et al. (author)
  • Phylogenomics, divergence times and notes of orders in Basidiomycota
  • 2024
  • In: Fungal Diversity. - 1560-2745 .- 1878-9129. ; 126, s. 127-406
  • Journal article (peer-reviewed)abstract
    • Basidiomycota is one of the major phyla in the fungal tree of life. The outline of Basidiomycota provides essential taxonomic information for researchers and workers in mycology. In this study, we present a time-framed phylogenomic tree with 487 species of Basidiomycota from 127 families, 47 orders, 14 classes and four subphyla; we update the outline of Basidiomycota based on the phylogenomic relationships and the taxonomic studies since 2019; and we provide notes for each order and discuss the history, defining characteristics, evolution, justification of orders, problems, significance, and plates. Our phylogenomic analysis suggests that the subphyla diverged in a time range of 443–490 Myr (million years), classes in a time range of 312–412 Myr, and orders in a time range of 102–361 Myr. Families diverged in a time range of 50–289 Myr, 76–224 Myr, and 62–156 Myr in Agaricomycotina, Pucciniomycotina, and Ustilaginomycotina, respectively. Based on the phylogenomic relationships and divergence times, we propose a new suborder Mycenineae in Agaricales to accommodate Mycenaceae. In the current outline of Basidiomycota, there are four subphyla, 20 classes, 77 orders, 297 families, and 2134 genera accepted. When building a robust taxonomy of Basidiomycota in the genomic era, the generation of molecular phylogenetic data has become relatively easier. Finding phenotypical characters, especially those that can be applied for identification and classification, however, has become increasingly challenging.
  •  
6.
  • Leng, Jiewu, et al. (author)
  • Unlocking the power of industrial artificial intelligence towards Industry 5.0: Insights, pathways, and challenges
  • 2024
  • In: Journal of manufacturing systems. - : Elsevier BV. - 0278-6125 .- 1878-6642. ; 73, s. 349-363
  • Research review (peer-reviewed)abstract
    • With the continuous development of human-centric, resilient, and sustainable manufacturing towards Industry 5.0, Artificial Intelligence (AI) has gradually unveiled new opportunities for additional functionalities, new features, and tendencies in the industrial landscape. On the other hand, the technology-driven Industry 4.0 paradigm is still in full swing. However, there exist many unreasonable designs, configurations, and implementations of Industrial Artificial Intelligence (IndAI) in practice before achieving either Industry 4.0 or Industry 5.0 vision, and a significant gap between the individualized requirement and actual implementation result still exists. To provide insights for designing appropriate models and algorithms in the upgrading process of the industry, this perspective article classifies IndAI by rating the intelligence levels and presents four principles of implementing IndAI. Three significant opportunities of IndAI, namely, collaborative intelligence, self-learning intelligence, and crowd intelligence, towards Industry 5.0 vision are identified to promote the transition from a technology-driven initiative in Industry 4.0 to the coexistence and interplay of Industry 4.0 and a value-oriented proposition in Industry 5.0. Then, pathways for implementing IndAI towards Industry 5.0 together with key empowering techniques are discussed. Social barriers, technology challenges, and future research directions of IndAI are concluded, respectively. We believe that our effort can lay a foundation for unlocking the power of IndAI in futuristic Industry 5.0 research and engineering practice.
  •  
7.
  • Liu, Ruishun, et al. (author)
  • Cryosphere-Hydrometeorology Observations for a Water Tower Unit on the Tibetan Plateau Using the BeiDou-3 Navigation Satellite System
  • 2024
  • In: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY. - 0003-0007 .- 1520-0477. ; 105:3
  • Journal article (peer-reviewed)abstract
    • Life and civilization in arid regions depend on the availability of freshwater. Arid alpine river basins, where hydrological processes are highly sensitive to rapid warming, act as vital water towers for lowland oases. However, scientific understanding of precipitation variability and related cryosphere-hydrology processes is extremely limited because of the scarcity of in situ observations. The upper Danghe River basin (UDB; similar to 14,000 km2) is an arid and westerly dominated basin on the northeastern Tibetan Plateau and is the water source for the Dunhuang Oasis in China. We have established a comprehensive cryosphere-hydrometeorology observation network in the basin since 2014. At present, the network consists of 21 automatic rain gauges, 22 soil freeze-thaw monitoring stations, 4 automatic weather stations (AWS), and a 50-m gradient meteorological tower with an eddy covariance system. In particular, the 18 sites, located in remote areas without public networks, are equipped with new -generation BeiDou-3 communication terminals that enable the observations to be easily, safely, and reliably read and quality controlled in near-real time from offices in the city or at home. This integrated observation network over the UDB that facilitates the monitoring of cryosphere-hydrology processes, land-atmosphere interactions, and local weather processes. In addition, the observations are helpful for the objective evaluation, and continual improvement, of hydrological models, satellite -retrieval products, and reanalysis datasets. Finally, the network is expected to promote a better understanding of the status and role of water towers in arid zones and to provide basic data support for the sustainable development of the Dunhuang Oasis and the Belt and Road.
  •  
8.
  • Lu, Fengyi, et al. (author)
  • Energy-efficient tool path generation and expansion optimisation for five-axis flank milling with meta-reinforcement learning
  • 2024
  • In: Journal of Intelligent Manufacturing. - : SPRINGER. - 0956-5515 .- 1572-8145.
  • Journal article (peer-reviewed)abstract
    • Five-axis flank milling is prevalent in complex surfaces manufacturing, and it typically consumes high electricity energy. To save energy and improve energy efficiency, this paper proposes a tool path optimisation of five-axis flank milling by meta-reinforcement learning. Firstly, considering flank milling features, a feed angle is defined that guides tool spatial motion and identifies an ideal principal path. Then, machining energy consumption and time are modelled by tool path variables, i.e., feed angle, cutting strip width and path length. Secondly, an energy-efficient tool path dynamic optimisation model is constructed, which is then described by multiple Markov Decision Processes (MDPs). Thirdly, meta-learning integrating with the Soft Actor-Critic (MSAC) framework is utilised to address the MDPs. In an MDP with one principal path randomly generated by a feed angle, cutting strip width is dynamically optimised under a maximum scallop height limit to realise energy-efficient multi-expansions. By quick traversal of MDPs with various feed angles, MSAC enables an energy-efficient path generation and expansion integrated scheme. Experiments show that, regarding machining energy consumption and time, the proposed method achieves a reduction of 69.96% and 68.44% over the end milling with an iso-scallop height, and of 41.50% and 39.80% over the flank milling with an iso-scallop height, with a minimum amount of machining carbon emission, which highlights its contribution to the arena of energy-oriented and sustainable intelligent manufacturing.
  •  
9.
  • Mastantuoni, Gabriella G., et al. (author)
  • Rationally designed conductive wood with mechanoresponsive electrical resistance
  • 2024
  • In: Composites. Part A, Applied science and manufacturing. - : Elsevier BV. - 1359-835X .- 1878-5840. ; 178
  • Journal article (peer-reviewed)abstract
    • Porous cellular foams, combining lightweight, high strength, and compressibility, hold great promise in a wide range of advanced applications. Here, the native structure of pine wood was modified by in-situ lignin sulfonation and unidirectional freezing, resulting in an alveolate structure inside the wood cell wall with arrays of sub-100 nm channels. The obtained wood foam exhibited highly enhanced permeability while retaining the native cellular arrangement and high lignin and hemicellulose content. Such engineered cellular foam contributed to superior mechanical performance with compressive strength of 9 MPa and Young's modulus of 344 MPa in the longitudinal direction. The high porosity allowed homogeneous infiltration of conductive polymer PEDOT:PSS inside the wood cell wall. The resulting composite exhibited high conductivity, sponge-like compressibility and the ability to modulate electrical resistance in a reversible manner in the radial direction. This rationally designed conductive wood demonstrated potential in durable and ultrasensitive pressure-responsive devices and strain sensors.
  •  
10.
  • Qi, Xingmei, et al. (author)
  • Spiders use structural conversion of globular amyloidogenic domains to make strong silk fibers
  • 2024
  • In: Advanced Functional Materials. - : Wiley-VCH Verlagsgesellschaft. - 1616-301X .- 1616-3028. ; 34:23
  • Journal article (peer-reviewed)abstract
    • Spider silk—an environmentally friendly protein-based material—is widely recognized for its extraordinary mechanical properties. Biomimetic spider silk-like fibers made from recombinant spider silk proteins (spidroins) currently falls short compared to natural silks in terms of mechanical performance. In this study, it is discovered that spiders use structural conversion of molecular enhancers—conserved globular 127-residue spacer domains—to make strong silk fibers. This domain lacks poly-Ala motifs but interestingly contains motifs that are similar to human amyloidogenic motifs, and that it self-assembles into amyloid-like fibrils through a non-nucleation-dependent pathway, likely to avoid the formation of cytotoxic intermediates. Incorporating this spacer domain into a recombinant chimeric spidroin facilitates self-assembly into silk-like fibers, increases fiber molecular homogeneity, and markedly enhances fiber mechanical strength. These findings highlight that spiders employ diverse strategies to produce silk with exceptional mechanical properties. The spacer domain offers a way to enhance the properties of recombinant spider silk-like fibers and other functional materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view