SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Zimmer J.)) srt2:(2015-2019) srt2:(2016)"

Sökning: (WFRF:(Zimmer J.)) srt2:(2015-2019) > (2016)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ackermann, M., et al. (författare)
  • FERMI-LAT OBSERVATIONS OF THE LIGO EVENT GW150914
  • 2016
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 823:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fermi Large Area Telescope (LAT) has an instantaneous field of view (FoV) covering similar to 1/5 of the sky and it completes a survey of the entire sky in high-energy gamma-rays every 3 hr. It enables searches for transient phenomena over timescales from milliseconds to years. Among these phenomena could be electromagnetic counterparts to gravitational wave (GW) sources. In this paper, we present a detailed study of the LAT observations relevant to Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914, which is the first direct detection of gravitational waves and has been interpreted as being due to the coalescence of two stellar-mass black holes. The localization region for GW150914 was outside the LAT FoV at the time of the GW signal. However, as part of routine survey observations, the LAT observed the entire LIGO localization region within similar to 70 minutes of the trigger and thus enabled a comprehensive search for a.-ray counterpart to GW150914. The study of the LAT data presented here did not find any potential counterparts to GW150914, but it did provide limits on the presence of a transient counterpart above 100 MeV on timescales of hours to days over the entire GW150914 localization region.
  •  
2.
  • Acero, F., et al. (författare)
  • THE FIRST FERMI LAT SUPERNOVA REMNANT CATALOG
  • 2016
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 224:1
  • Tidskriftsartikel (refereegranskat)abstract
    • To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope (LAT). Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude allows us to determine an upper limit of 22% on the number of GeV candidates falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, we demonstrate the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. We model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.
  •  
3.
  • Ackermann, M., et al. (författare)
  • 2FHL : THE SECOND CATALOG OF HARD FERMI-LAT SOURCES
  • 2016
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 222:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a catalog of sources detected above 50 GeV by the Fermi-Large Area Telescope (LAT) in 80 months of data. The newly delivered Pass. 8 event-level analysis allows the detection and characterization of sources in the 50 GeV-2 TeV energy range. In this energy band, Fermi-LAT. has detected 360 sources, which constitute the second catalog of hard Fermi-LAT. sources (2FHL). The improved angular resolution enables the precise localization of point sources (similar to 1.' 7 radius at 68% C.L.) and the detection and characterization of spatially extended sources. We find that 86% of the sources can be associated with counterparts at other wavelengths, of which the majority (75%) are active galactic nuclei and the rest (11%) are Galactic sources. Only 25% of the 2FHL sources have been previously detected by Cherenkov telescopes, implying that the 2FHL provides a reservoir of candidates to be followed up at very high energies. This work closes the energy gap between the observations performed at GeV energies by Fermi-LAT. on orbit and the observations performed at higher energies by Cherenkov telescopes from the ground.
  •  
4.
  • Ackermann, M., et al. (författare)
  • FERMI LARGE AREA TELESCOPE DETECTION OF EXTENDED GAMMA-RAY EMISSION FROM THE RADIO GALAXY FORNAX A
  • 2016
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 826:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the Fermi Large Area Telescope detection of extended gamma-ray emission from the lobes of the radio galaxy Fornax. A using 6.1 years of Pass. 8 data. After Centaurus. A, this is now the second example of an extended gamma-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to be < 14% of the total gamma-ray flux. A preferred alignment of the gamma-ray elongation with the radio lobes was demonstrated by rotating the radio lobes template. We found no significant evidence for variability on similar to 0.5 year timescales. Taken together, these results strongly suggest a lobe origin for the gamma-rays. With the extended nature of the > 100 MeV gamma-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus. A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the gamma-ray fluxes by factors of about similar to 2-3, depending on the EBL model adopted. An additional gamma-ray spectral component is thus required, and could be due to hadronic emission arising from proton-proton collisions of cosmic rays with thermal plasma within the radio lobes.
  •  
5.
  • Acero, F., et al. (författare)
  • DEVELOPMENT OF THE MODEL OF GALACTIC INTERSTELLAR EMISSION FOR STANDARD POINT-SOURCE ANALYSIS OF FERMI LARGE AREA TELESCOPE DATA
  • 2016
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 223:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Most of the celestial. rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop. I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20 degrees and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within similar to 4 degrees of the Galactic Center.
  •  
6.
  • Ackermann, M., et al. (författare)
  • Resolving the Extragalactic gamma-Ray Background above 50 GeV with the Fermi Large Area Telescope
  • 2016
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 116:15
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fermi Large Area Telescope (LAT) Collaboration has recently released a catalog of 360 sources detected above 50 GeV (2FHL). This catalog was obtained using 80 months of data re-processed with Pass 8, the newest event-level analysis, which significantly improves the acceptance and angular resolution of the instrument. Most of the 2FHL sources at high Galactic latitude are blazars. Using detailed Monte Carlo simulations, we measure, for the first time, the source count distribution, dN= dS, of extragalactic.-ray sources at E > 50 GeV and find that it is compatible with a Euclidean distribution down to the lowest measured source flux in the 2FHL (8 x 10(-12) ph cm(-2) s(-1)). We employ a one-point photon fluctuation analysis to constrain the behavior of dN= dS below the source detection threshold. Overall, the source count distribution is constrained over three decades in flux and found compatible with a broken power law with a break flux, Sb, in the range [8 x 10-12; 1.5 x 10-11] ph cm(-2) s(-1) and power-law indices below and above the break of a 2. [1.60; 1.75] and a 1 +/- 2.49 +/- 0.12, respectively. Integration of dN= dS shows that point sources account for at least 86_16 -14 % of the total extragalactic gamma-ray background. The simple form of the derived source count distribution is consistent with a single population (i. e., blazars) dominating the source counts to the minimum flux explored by this analysis. We estimate the density of sources detectable in blind surveys that will be performed in the coming years by the Cherenkov Telescope Array.
  •  
7.
  • Ajello, M., et al. (författare)
  • FERMI-LAT OBSERVATIONS OF HIGH-ENERGY gamma-RAY EMISSION TOWARD THE GALACTIC CENTER
  • 2016
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 819:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fermi Large Area Telescope (LAT) has provided the most detailed view to date of the emission toward the Galactic center (GC) in high-energy gamma-rays. This paper describes the analysis of data taken during the first 62 months of the mission in the energy range 1-100 GeV from a 15 degrees x 15 degrees region about the direction of the GC. Specialized interstellar emission models (IEMs) are constructed to enable the separation of the.-ray emissions produced by cosmic ray particles interacting with the interstellar gas and radiation fields in the Milky Way into that from the inner similar to 1 kpc surrounding the GC, and that from the rest of the Galaxy. A catalog of point sources for the 15 degrees x 15 degrees region is self-consistently constructed using these IEMs: the First Fermi-LAT Inner Galaxy Point Source Catalog (1FIG). The spatial locations, fluxes, and spectral properties of the 1FIG sources are presented, and compared with gamma-ray point sources over the same region taken from existing catalogs. After subtracting the interstellar emission and point-source contributions a residual is found. If templates that peak toward the GC are used to model the positive residual the agreement with the data improves, but none of the additional templates tried account for all of its spatial structure. The spectrum of the positive residual modeled with these templates has a strong dependence on the choice of IEM.
  •  
8.
  • Ackermann, M., et al. (författare)
  • Deep view of the Large Magellanic Cloud with six years of Fermi-LAT observations
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 586
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The nearby Large Magellanic Cloud (LMC) provides a rare opportunity of a spatially resolved view of an external star-forming galaxy in gamma-rays. The LMC was detected at 0.1-100 GeV as an extended source with CGRO/EGRET and using early observations with the Fermi-LAT. The emission was found to correlate with massive star-forming regions and to be particularly bright towards 30 Doradus. Aims. Studies of the origin and transport of cosmic rays (CRs) in the Milky Way are frequently hampered by line-of-sight confusion and poor distance determination. The LMC offers a complementary way to address these questions by revealing whether and how the gamma-ray emission is connected to specific objects, populations of objects, and structures in the galaxy. Methods. We revisited the gamma-ray emission from the LMC using about 73 months of Fermi-LAT P7REP data in the 0.2-100 GeV range. We developed a complete spatial and spectral model of the LMC emission, for which we tested several approaches: a simple geometrical description, template-fitting, and a physically driven model for CR-induced interstellar emission. Results. In addition to identifying PSR J0540-6919 through its pulsations, we find two hard sources positionally coincident with plerion N 157B and supernova remnant N 132D, which were also detected at TeV energies with H.E.S.S. We detect an additional soft source that is currently unidentified. Extended emission dominates the total flux from the LMC. It consists of an extended component of about the size of the galaxy and additional emission from three to four regions with degree-scale sizes. If it is interpreted as CRs interacting with interstellar gas, the large-scale emission implies a large-scale population of similar to 1-100 GeV CRs with a density of similar to 30% of the local Galactic value. On top of that, the three to four small-scale emission regions would correspond to enhancements of the CR density by factors 2 to 6 or higher, possibly more energetic and younger populations of CRs compared to the large-scale population. An alternative explanation is that this is emission from an unresolved population of at least two dozen objects, such as pulsars and their nebulae or supernova remnants. This small-scale extended emission has a spatial distribution that does not clearly correlate with known components of the LMC, except for a possible relation to cavities and supergiant shells. Conclusions. The Fermi-LAT GeV observations allowed us to detect individual sources in the LMC. Three of the newly discovered sources are associated with rare and extreme objects. The 30 Doradus region is prominent in GeV gamma-rays because PSR J0540-6919 and N 157B are strong emitters. The extended emission from the galaxy has an unexpected spatial distribution, and observations at higher energies and in radio may help to clarify its origin.
  •  
9.
  • Ackermann, M., et al. (författare)
  • MINUTE-TIMESCALE > 100 MeV gamma-RAY VARIABILITY DURING THE GIANT OUTBURST OF QUASAR 3C 279 OBSERVED BY FERMI-LAT IN 2015 JUNE
  • 2016
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 824:2
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2015 June 16, Fermi- LAT observed a giant outburst from the flat spectrum radio quasar 3C 279 with a peak >100 MeV flux of similar to 3.6 x 10(-5) photons cm(-2) s(-1), averaged over orbital period intervals. It is historically the highest gamma-ray flux observed from the source, including past EGRET observations, with the gamma-ray isotropic luminosity reaching similar to 10(49) erg s(-1). During the outburst, the Fermi spacecraft, which has an orbital period of 95.4 minutes, was operated in a special pointing mode to optimize the exposure for 3C 279. For the first time, significant flux variability at sub-orbital timescales was found in blazar observations by Fermi- LAT. The source flux variability was resolved down to 2-minute binned timescales, with flux doubling times of less than 5 minutes. The observed minute-scale variability suggests a very compact emission region at hundreds of Schwarzschild radii from the central engine in conical jet models. A minimum bulk jet Lorentz factor (Gamma) of 35 is necessary to avoid both internal gamma-ray absorption and super-Eddington jet power. In the standard external radiation Comptonization scenario, G should be at least 50 to avoid overproducing the synchrotron self-Compton component. However, this predicts extremely low magnetization (similar to 5 x 10(-4)). Equipartition requires Gamma as high as 120, unless the emitting region is a small fraction of the dissipation region. Alternatively, we consider. rays originating as synchrotron radiation of gamma e similar to 1.6 x 10(6) electrons, in a magnetic field B similar to 1.3 kG, accelerated by strong electric fields E similar to B in the process of magnetoluminescence. At such short distance scales, one cannot immediately exclude the production of gamma-rays in hadronic processes.
  •  
10.
  • Ackermann, M., et al. (författare)
  • Search for gamma-ray emission from the Coma Cluster with six years of Fermi-LAT data
  • 2016
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 819:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results from gamma-ray observations of the Coma cluster incorporating six years of Fermi-LAT data and the newly released "Pass 8" event-level analysis. Our analysis of the region reveals low-significance residual structures within the virial radius of the cluster that are too faint for a detailed investigation with the current data. Using a likelihood approach that is free of assumptions on the spectral shape we derive upper limits on the gamma-ray flux that is expected from energetic particle interactions in the cluster. We also consider a benchmark spatial and spectral template motivated by models in which the observed radio halo is mostly emission by secondary electrons. In this case, the median expected and observed upper limits for the flux above 100MeV are 1.7 x 10(-9) ph cm(-2) s(-1) and 5.2 x 10(-9) ph cm(-2) s(-1) respectively (the latter corresponds to residual emission at the level of 1.8 sigma). These bounds are comparable to or higher than predicted levels of hadronic gamma-ray emission in cosmic-ray (CR) models with or without reacceleration of secondary electrons, although direct comparisons are sensitive to assumptions regarding the origin and propagation mode of CRs and magnetic field properties. The minimal expected.-ray flux from radio and star-forming galaxies within the Coma cluster is roughly an order of magnitude below the median sensitivity of our analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy