SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(de Rossi P)) srt2:(2020-2024) srt2:(2024)"

Sökning: (WFRF:(de Rossi P)) srt2:(2020-2024) > (2024)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Murari, A., et al. (författare)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
2.
  • Schady, P., et al. (författare)
  • Comparing emission- and absorption-based gas-phase metallicities in GRB host galaxies at z =2-4 using JWST
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 529:3, s. 2807-2831
  • Tidskriftsartikel (refereegranskat)abstract
    • Much of what is known of the chemical composition of the universe is based on emission line spectra from star-forming galaxies. Emission-based inferences are, nevertheless, model-dependent and they are dominated by light from luminous star-forming regions. An alternative and sensitive probe of the metallicity of galaxies is through absorption lines imprinted on the luminous afterglow spectra of long gamma ray bursts (GRBs) from neutral material within their host galaxy. We present results from a JWST/NIRSpec programme to investigate for the first time the relation between the metallicity of neutral gas probed in absorption by GRB afterglows and the metallicity of the star-forming regions for the same host galaxy sample. Using an initial sample of eight GRB host galaxies at z = 2.1–4.7, we find a tight relation between absorption and emission line metallicities when using the recently proposed ?^ metallicity diagnostic (±0.2 dex). This agreement implies a relatively chemically homogeneous multiphase interstellar medium and indicates that absorption and emission line probes can be directly compared. However, the relation is less clear when using other diagnostics, such as R23 and R3. We also find possible evidence of an elevated N/O ratio in the host galaxy of GRB 090323 at z = 4.7, consistent with what has been seen in other z > 4 galaxies. Ultimate confirmation of an enhanced N/O ratio and of the relation between absorption and emission line metallicities will require a more direct determination of the emission line metallicity via the detection of temperature-sensitive auroral lines in our GRB host galaxy sample.
  •  
3.
  • Kudaibergenova, E., et al. (författare)
  • MEASUREMENTS OF THE REACTION CROSS SECTIONS OF NEUTRON-RICH Sn ISOTOPES AT THE R 3 B SETUP
  • 2024
  • Ingår i: Acta Physica Polonica B, Proceedings Supplement. - 1899-2358. ; 17:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A fundamental framework to describe nuclear matter as a function of pressure and nuclear isospin asymmetry is the nuclear Equation of State (EoS). Constraining the parameters of the EoS is one of the central issues in nuclear physics, especially since the slope parameter L has not yet been constrained well experimentally. It has been identified that a precise determination of the neutron-removal cross section in neutron-rich nuclei, which correlates with the neutron-skin thickness, would provide a more precise constraint on L. To this end, an experiment was performed at the R3B setup in the GSI Helmholtzzentrum für Schwerionenforschung GmbH as a part of the FAIR Phase-0 program. The reactions are studied in inverse kinematics with neutron-rich tin isotopes in the mass range of A = 124–134 on carbon targets of different thicknesses. The reaction products have been measured at beam energies of 400–900 MeV/u in a kinematically complete manner. In this communication, the analysis of124Sn+12C at 900 MeV/u is presented. The charge-exchange reactions, resulting processes, and their role in the calculation of other reaction cross sections are discussed.
  •  
4.
  • Lihtar, I., et al. (författare)
  • RELATIVISTIC COULOMB EXCITATION OF 124 Sn
  • 2024
  • Ingår i: Acta Physica Polonica B, Proceedings Supplement. - 1899-2358. ; 17:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The Coulomb excitation of 124, 128, 130, 132, 134Sn isotopes in the electric field of a Pb target have been studied using the R3B setup as a part of the FAIR Phase-0 program. The experiment was motivated by the possibility of using the nuclear dipole response to infer valuable information on the slope of the symmetry energy of the nuclear equation of state. Measurements were performed in inverse kinematics at relativistic energies of 750 MeV/u and 904 MeV/u. The analysis method and preliminary results for the decay channel with a single outgoing neutron for 124Sn are reported.
  •  
5.
  •  
6.
  • Kuderna, Lukas F. K., et al. (författare)
  • Identification of constrained sequence elements across 239 primate genomes
  • 2024
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 625:7996, s. 735-742
  • Tidskriftsartikel (refereegranskat)abstract
    • Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3,4,5,6,7,8,9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals.
  •  
7.
  • Wright, Graham D., et al. (författare)
  • Recognising the importance and impact of Imaging Scientists: Global guidelines for establishing career paths within core facilities
  • 2024
  • Ingår i: JOURNAL OF MICROSCOPY. - 0022-2720 .- 1365-2818. ; 294:3, s. 397-410
  • Tidskriftsartikel (refereegranskat)abstract
    • In the dynamic landscape of scientific research, imaging core facilities are vital hubs propelling collaboration and innovation at the technology development and dissemination frontier. Here, we present a collaborative effort led by Global BioImaging (GBI), introducing international recommendations geared towards elevating the careers of Imaging Scientists in core facilities. Despite the critical role of Imaging Scientists in modern research ecosystems, challenges persist in recognising their value, aligning performance metrics and providing avenues for career progression and job security. The challenges encompass a mismatch between classic academic career paths and service-oriented roles, resulting in a lack of understanding regarding the value and impact of Imaging Scientists and core facilities and how to evaluate them properly. They further include challenges around sustainability, dedicated training opportunities and the recruitment and retention of talent. Structured across these interrelated sections, the recommendations within this publication aim to propose globally applicable solutions to navigate these challenges. These recommendations apply equally to colleagues working in other core facilities and research institutions through which access to technologies is facilitated and supported. This publication emphasises the pivotal role of Imaging Scientists in advancing research programs and presents a blueprint for fostering their career progression within institutions all around the world. In the exciting world of scientific research, imaging core facilities are essential hubs where scientists use advanced technologies to conduct experiments and uncover fascinating discoveries. What makes these facilities remarkable is that multiple scientists can access and utilise a variety of instruments for a wide range of multidisciplinary research projects, fostering collaboration and innovation. At the forefront of this scientific adventure are Imaging Scientists, experts who play a crucial role in planning experiments, preparing materials, adapting and acquiring technologies, collecting data, training and supporting researchers, analysing images and forming conclusions. Despite their pivotal contributions, there are challenges in recognising the importance of Imaging Scientists and ensuring they have ample opportunities to advance in their careers. These challenges include a mismatch between the typical academic career path and the unique roles and responsibilities of Imaging Scientists, a lack of widespread understanding of their value plus financial constraints, insufficient training opportunities, and difficulties in attracting and retaining talented individuals. To address these issues, Global BioImaging (GBI; www.globalbioimaging.org) has brought together Imaging Scientists from around the world to develop a generally applicable set of recommendations in three key areas: highlighting the significance and value of Imaging Scientists, making it easier to recruit and retain them, and supporting their ongoing learning and professional growth. A notable concept is to reimagine the traditional separation between academic roles and technical support roles. GBI envisions that these recommendations will not only benefit imaging facilities but also prove valuable for research institutions housing diverse technologies organised into core facilities. Recognising the diverse nature of research performing institutions globally, the GBI community sees this guide as a starting point that will initiate dialogue and instigate change, which should be periodically updated as the needs of Imaging Scientists change. This initial version lays a solid foundation for future enhancements, contributing to the acknowledgement and support of the invaluable work done by Imaging Scientists on a global scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy