SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(de Vries Elisabeth G. E.)) srt2:(2010-2014)"

Sökning: (WFRF:(de Vries Elisabeth G. E.)) > (2010-2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abel, I, et al. (författare)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
2.
  • Hobirk, J., et al. (författare)
  • Improved confinement in JET hybrid discharges
  • 2012
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 54:9, s. 095001-
  • Tidskriftsartikel (refereegranskat)abstract
    • A new technique has been developed to produce plasmas with improved confinement relative to the H 98,y2 scaling law (ITER Physics Expert Groups on Confinement and Transport and Confinement Modelling and Database ITER Physics Basics Editors and ITER EDA 1999 Nucl. Fusion 39 2175) on the JET tokamak. In the mid-size tokamaks ASDEX upgrade and DIII-D heating during the current formation is used to produce a flat q-profile with a minimum close to 1. On JET this technique leads to q-profiles with similar minimum q but opposite to the other tokamaks not to an improved confinement state. By changing the method utilizing a faster current ramp with temporary higher current than in the flattop (current overshoot) plasmas with improved confinement (H 98,y2=1.35) and good stability (β N3) have been produced and extended to many confinement times only limited by technical constraints. The increase in H 98,y2-factor is stronger with more heating power as can be seen in a power scan. The q-profile development during the high power phase in JET is reproduced by current diffusion calculated by TRANSP and CRONOS. Therefore the modifications produced by the current overshoot disappear quickly from the edge but the confinement improvement lasts longer, in some cases up to the end of the heating phase.
  •  
3.
  • Yao, James C., et al. (författare)
  • Everolimus for advanced pancreatic neuroendocrine tumors
  • 2011
  • Ingår i: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 364:6, s. 514-523
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Everolimus, an oral inhibitor of mammalian target of rapamycin (mTOR), has shown antitumor activity in patients with advanced pancreatic neuroendocrine tumors, in two phase 2 studies. We evaluated the agent in a prospective, randomized, phase 3 study. METHODS: We randomly assigned 410 patients who had advanced, low-grade or intermediate-grade pancreatic neuroendocrine tumors with radiologic progression within the previous 12 months to receive everolimus, at a dose of 10 mg once daily (207 patients), or placebo (203 patients), both in conjunction with best supportive care. The primary end point was progression-free survival in an intention-to-treat analysis. In the case of patients in whom radiologic progression occurred during the study, the treatment assignments could be revealed, and patients who had been randomly assigned to placebo were offered open-label everolimus. RESULTS: The median progression-free survival was 11.0 months with everolimus as compared with 4.6 months with placebo (hazard ratio for disease progression or death from any cause with everolimus, 0.35; 95% confidence interval [CI], 0.27 to 0.45; P<0.001), representing a 65% reduction in the estimated risk of progression or death. Estimates of the proportion of patients who were alive and progression-free at 18 months were 34% (95% CI, 26 to 43) with everolimus as compared with 9% (95% CI, 4 to 16) with placebo. Drug-related adverse events were mostly grade 1 or 2 and included stomatitis (in 64% of patients in the everolimus group vs. 17% in the placebo group), rash (49% vs. 10%), diarrhea (34% vs. 10%), fatigue (31% vs. 14%), and infections (23% vs. 6%), which were primarily upper respiratory. Grade 3 or 4 events that were more frequent with everolimus than with placebo included anemia (6% vs. 0%) and hyperglycemia (5% vs. 2%). The median exposure to everolimus was longer than exposure to placebo by a factor of 2.3 (38 weeks vs. 16 weeks). CONCLUSIONS: Everolimus, as compared with placebo, significantly prolonged progression-free survival among patients with progressive advanced pancreatic neuroendocrine tumors and was associated with a low rate of severe adverse events. (Funded by Novartis Oncology; RADIANT-3 ClinicalTrials.gov number, NCT00510068.).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy