SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(db:Swepub) pers:(Chen Xiaowen) srt2:(2016)"

Search: (db:Swepub) pers:(Chen Xiaowen) > (2016)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chen, Jialin, et al. (author)
  • Characterization and comparison of post-natal rat Achilles tendon-derived stem cells at different development stages
  • 2016
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Journal article (peer-reviewed)abstract
    • Tendon stem/progenitor cells (TSPCs) are a potential cell source for tendon tissue engineering. The striking morphological and structural changes of tendon tissue during development indicate the complexity of TSPCs at different stages. This study aims to characterize and compare post-natal rat Achilles tendon tissue and TSPCs at different stages of development. The tendon tissue showed distinct differences during development: the tissue structure became denser and more regular, the nuclei became spindle-shaped and the cell number decreased with time. TSPCs derived from 7 day Achilles tendon tissue showed the highest self-renewal ability, cell proliferation, and differentiation potential towards mesenchymal lineage, compared to TSPCs derived from 1 day and 56 day tissue. Microarray data showed up-regulation of several groups of genes in TSPCs derived from 7 day Achilles tendon tissue, which may account for the unique cell characteristics during this specific stage of development. Our results indicate that TSPCs derived from 7 day Achilles tendon tissue is a superior cell source as compared to TSPCs derived from 1 day and 56 day tissue, demonstrating the importance of choosing a suitable stem cell source for effective tendon tissue engineering and regeneration.
  •  
2.
  • Chen, Xiaowen, et al. (author)
  • Multi-bit Transient Fault Control for NoC Links Using 2D Fault Coding Method
  • 2016
  • In: 2016 TENTH IEEE/ACM INTERNATIONAL SYMPOSIUM ON NETWORKS-ON-CHIP (NOCS). - : IEEE. - 9781467390309
  • Conference paper (peer-reviewed)abstract
    • In deep nanometer scale, Network-on-Chip (NoC) links are more prone to multi-bit transient fault. Conventional ECC techniques brings heavy area, power, and timing overheads when correcting and detecting multiple transient faults. Therefore, a cost-effective ECC technique, named 2D fault coding method, is adopted to overcome the multi-bit transient fault issue of NoC links. Its key innovation is that the wires of a link are treated as its matrix appearance and light-weight Parity Check Coding (PCC) is performed on the matrix's two dimensions (horizontal matrix rows and vertical matrix columns). Horizontal PCCs and vertical PCCs work together to find the faults' position and then correct them by simply inverting them. The procedure of using the 2D fault coding method to protect a NoC link is proposed, its correction and detection capability is analyzed, and its hardware implementation is carried out. Comparative experiments show that the proposal can largely reduce the ECC hardware cost, have much higher fault detection coverage, maintain almost zero silent fault percentages, and have higher fault correction percentages normalized under the same area, demonstrating that it is cost-effective and suitable to the multi-bit transient fault control for NoC links.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view