SwePub
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "(hsv:(MEDICAL AND HEALTH SCIENCES) hsv:(Basic Medicine) hsv:(Physiology)) srt2:(1995-2009)"

Sökning: (hsv:(MEDICAL AND HEALTH SCIENCES) hsv:(Basic Medicine) hsv:(Physiology)) > (1995-2009)

  • Resultat 1-10 av 1767
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Yawei, et al. (författare)
  • Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE.
  • 2006
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 12:5, s. 518-525
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS) inflammation. Neurons induce the proliferation of activated CD4+ T cells through B7-CD28 and transforming growth factor (TGF)-beta1–TGF-beta receptor signaling pathways, resulting in amplification of T-cell receptor signaling through phosphorylated ZAP-70, interleukin (IL)-2 and IL-9. The interaction between neurons and T cells results in the conversion of encephalitogenic T cells to CD25+TGF-beta1+CTLA-4+FoxP3+ T regulatory (Treg) cells that suppress encephalitogenic T cells and inhibit experimental autoimmune encephalomyelitis. Suppression is dependent on cytotoxic T lymphocyte antigen (CTLA)-4 but not TGF-beta1. Autocrine action of TGF-beta1, however, is important for the proliferative arrest of Treg cells. Blocking the B7 and TGF-beta pathways prevents the CNS-specific generation of Treg cells. These findings show that generation of neuron-dependent Treg cells in the CNS is instrumental in regulating CNS inflammation.
  •  
2.
  •  
3.
  •  
4.
  • Birnir, Bryndis, et al. (författare)
  • The impact of sub-cellular location and intracellular neuronal proteins on properties of GABA(A) receptors
  • 2007
  • Ingår i: Current Pharmaceutical Design. - : Bentham Science Publishers Ltd.. - 1381-6128 .- 1873-4286. ; 13:31, s. 3169-3177
  • Tidskriftsartikel (refereegranskat)abstract
    • Most studies of GABA(A) receptor accessory proteins have focused on trafficking, clustering and phosphorylation state of the channel-forming subunits and as a result a number of proteins and mechanisms have been identified that can influence the GABA(A) channel expression and function in the cell plasma membrane. In the light of a growing list of intracellular and transmembrane neuronal proteins shown to affect the fate, function and pharmacology of the GABA(A) receptors in neurons, the concept of what constitutes the native GABA(A) receptor complex may need to be re-examined. It is perhaps more appropriate to consider the associated proteins or some of them to be parts of the receptor channel complex in the capacity of ancillary proteins. Here we highlight some of the effects the intracellular environment has on the GABA-activated channel function and pharmacology. The studies demonstrate the need for co-expression of accessory proteins with the GABA(A) channel-forming subunits in heterologous expression systems in order to obtain the full repertoire of GABA(A) receptors characteristics recorded in the native neuronal environment. Further studies e.g. on gene-modified animal models are needed for most of the accessory proteins to establish their significance in normal physiology and in pathophysiology of neurological and psychiatric diseases. The challenge remains to elucidate the effects that the accessory proteins and processes (e.g. phosphorylation) plus the sub-cellular location have on the "fine-tuning" of the functional and pharmacological properties of the GABA(A) receptor channels.
  •  
5.
  • Eghbali, M, et al. (författare)
  • Hippocampal GABA(A) channel conductance increased by diazepam
  • 1997
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 388:6637, s. 71-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Benzodiazepines, which are widely used clinically for relief of anxiety and for sedation, are thought to enhance synaptic inhibition in the central nervous system by increasing the open probability of chloride channels activated by the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). Here we show that the benzodiazepine diazepam can also increase the conductance of GABAA channels activated by low concentrations of GABA (0.5 or 5 microM) in rat cultured hippocampal neurons. Before exposure to diazepam, chloride channels activated by GABA had conductances of 8 to 53pS. Diazepam caused a concentration-dependent and reversible increase in the conductance of these channels towards a maximum conductance of 70-80 pS and the effect was as great as 7-fold in channels of lowest initial conductance. Increasing the conductance of GABAA channels tonically activated by low ambient concentrations of GABA in the extracellular environment may be an important way in which these drugs depress excitation in the central nervous system. That any drug has such a large effect on single channel conductance has not been reported previously and has implications for models of channel structure and conductance.
  •  
6.
  • Lindquist, Catarina, et al. (författare)
  • Extrasynaptic GABA(A) channels activated by THIP are modulated by diazepam in CA1 pyramidal neurons in the rat brain hippocampal slice
  • 2003
  • Ingår i: Molecular and Cellular Neuroscience. - 1044-7431 .- 1095-9327. ; 24:1, s. 250-257
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-channel currents were activated by THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) in cell-attached patches on CA1 pyramidal neurons in the rat hippocampal slice preparation. THIP activated GABA(A) channels after a delay that was concentration-dependent and decreased by 1 muM diazepam. The currents showed outward rectification. Channels activated at depolarized 40 mV relative to the chloride reversal potential had low conductance (<40 pS) but the conductance increased with time, resulting in high-conductance channels (>40 pS). The average maximal-channel conductances for 2 and 100 muM THIP were 59 and 62 pS (-Vp = 40 mV), respectively, whereas in 2 muM THIP plus 1 muM diazepam, it was 71 pS. The results show that in hippocampal neurons THIP activates channels with characteristics similar to those of channels activated by low concentrations (0.5-5 AM) of GABA. The increase in the inhibitory conductance with membrane depolarization permits gradation of the shunt pathway relative to the level of the excitatory input. (C) 2003 Elsevier Science (USA). All rights reserved.
  •  
7.
  • Wallén-Mackenzie, Åsa, et al. (författare)
  • Restricted cortical and amygdaloid removal of vesicular glutamate transporter 2 in preadolescent mice impacts dopaminergic activity and neuronal circuitry of higher brain function.
  • 2009
  • Ingår i: The Journal of neuroscience : the official journal of the Society for Neuroscience. - 1529-2401 .- 0270-6474. ; 29:7, s. 2238-51
  • Tidskriftsartikel (refereegranskat)abstract
    • A major challenge in neuroscience is to resolve the connection between gene functionality, neuronal circuits, and behavior. Most, if not all, neuronal circuits of the adult brain contain a glutamatergic component, the nature of which has been difficult to assess because of the vast cellular abundance of glutamate. In this study, we wanted to determine the role of a restricted subpopulation of glutamatergic neurons within the forebrain, the Vglut2-expressing neurons, in neuronal circuitry of higher brain function. Vglut2 expression was selectively deleted in the cortex, hippocampus, and amygdala of preadolescent mice, which resulted in increased locomotor activity, altered social dominance and risk assessment, decreased sensorimotor gating, and impaired long-term spatial memory. Presynaptic VGLUT2-positive terminals were lost in the cortex, striatum, nucleus accumbens, and hippocampus, and a downstream effect on dopamine binding site availability in the striatum was evident. A connection between the induced late-onset, chronic reduction of glutamatergic neurotransmission and dopamine signaling within the circuitry was further substantiated by a partial attenuation of the deficits in sensorimotor gating by the dopamine-stabilizing antipsychotic drug aripiprazole and an increased sensitivity to amphetamine. Somewhat surprisingly, given the restricted expression of Vglut2 in regions responsible for higher brain function, our analyses show that VGLUT2-mediated neurotransmission is required for certain aspects of cognitive, emotional, and social behavior. The present study provides support for the existence of a neurocircuitry that connects changes in VGLUT2-mediated neurotransmission to alterations in the dopaminergic system with schizophrenia-like behavioral deficits as a major outcome.
  •  
8.
  • Birnir, Bryndis, et al. (författare)
  • Bicuculline, pentobarbital and diazepam modulate spontaneous GABA(A) channels in rat hippocampal neurons
  • 2000
  • Ingår i: British Journal of Pharmacology. - : Wiley. - 1476-5381 .- 0007-1188. ; 131:4, s. 695-704
  • Tidskriftsartikel (refereegranskat)abstract
    • Spontaneously opening, chloride-selective channels that showed outward rectification were recorded in ripped-off patches from rat cultured hippocampal neurons and in cell-attached patches from rat hippocampal CA1 pyramidal neurons in slices. In both preparations, channels had multiple conductance states and the most common single-channel conductance varied. In the outside-out patches it ranged from 12 to 70 pS (Vp=40 mV) whereas in the cell-attached patches it ranged from 56 to 85 pS (-Vp=80 mV). Application of GABA to a patch showing spontaneous channel activity evoked a rapid, synchronous activation of channels. During prolonged exposure to either 5 or 100 microM GABA, the open probability of channels decreased. Application of GABA appeared to have no immediate effect on single-channel conductance. Exposure of the patches to 100 microM bicuculline caused a gradual decrease on the single-channel conductance of the spontaneous channels. The time for complete inhibition to take place was slower in the outside-out than in the cell-attached patches. Application of 100 microM pentobarbital or 1 microM diazepam caused 2 - 4 fold increase in the maximum channel conductance of low conductance (<40 pS) spontaneously active channels. The observation of spontaneously opening GABA(A) channels in cell-attached patches on neurons in slices suggests that they may have a role in neurons in vivo and could be an important site of action for some drugs such as benzodiazepines, barbiturates and general anaesthetics.
  •  
9.
  • Eghbali, M, et al. (författare)
  • Pentobarbital modulates gamma-aminobutyric acid-activated single-channel conductance in rat cultured hippocampal neurons.
  • 2000
  • Ingår i: Molecular Pharmacology. - 0026-895X .- 1521-0111. ; 58:3, s. 463-9
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined the effect of a range of pentobarbital concentrations on 0.5 microM gamma-aminobutyric acid (GABA)-activated channels (10 +/- 1 pS) in inside-out or outside-out patches from rat cultured hippocampal neurons. The conductance increased from 12 +/- 4 to 62 +/- 9 pS as the pentobarbital concentration was raised from 10 to 500 microM and the data could be fitted by a Hill-type equation. At 100 microM pentobarbital plus 0.5 microM GABA, the conductance seemed to reach a plateau. The pentobarbital EC(50)(0.5 microM GABA) value was 22 +/- 4 microM and n was 1.9 +/- 0.5. In 1 mM pentobarbital plus 0.5 microM GABA, the single-channel conductance decreased to 34 +/- 8 pS. This apparent inhibition of channel conductance was relieved by 1 microM diazepam. The channel conductance was 64 +/- 6 pS in the presence of all three drugs. The channels were open more in the presence of both GABA and pentobarbital than in the presence of either drug alone. Pentobarbital alone (100 microM) activated channels with conductance (30 +/- 2 pS) and kinetic properties distinct from those activated by either GABA alone or GABA plus pentobarbital. Whether pentobarbital induces new conformations or promotes conformations observed in the presence of GABA alone cannot be determined from our study, but the results clearly show that it is the combination of drugs present that determines the single-channel conductance and the kinetic properties of the receptors.
  •  
10.
  • Blomgren, Klas, 1963, et al. (författare)
  • Pathological apoptosis in the developing brain
  • 2007
  • Ingår i: Apoptosis. - : Springer Science and Business Media LLC. - 1360-8185 .- 1573-675X. ; 12:5, s. 993-1010
  • Forskningsöversikt (refereegranskat)abstract
    • More than half of the initially-formed neurons are deleted in certain brain regions during normal development. This process, whereby cells are discretely removed without interfering with the further development of remaining cells, is called programmed cell death (PCD). The term apoptosis is used to describe certain morphological manifestations of PCD. Many of the effectors of this developmental cell death program are highly expressed in the developing brain, making it more susceptible to accidental activation of the death machinery, e.g. following hypoxia-ischemia or irradiation. Recent evidence suggests, however, that activation and regulation of cell death mechanisms under pathological conditions do not exactly mirror physiological, developmentally regulated PCD. It may be argued that the conditions after e.g. ischemia are not even compatible with the execution of PCD as we know it. Under pathological conditions cells are exposed to various stressors, including energy failure, oxidative stress and unbalanced ion fluxes. This results in parallel triggering and potential overshooting of several different cell death pathways, which then interact with one another and result in complex patterns of biochemical manifestations and cellular morphological features. These types of cell death are here called "pathological apoptosis," where classical hallmarks of PCD, like pyknosis, nuclear condensation and caspase-3 activation, are combined with non-PCD features of cell death. Here we review our current knowledge of the mechanisms involved, with special focus on the potential for therapeutic intervention tailored to the needs of the developing brain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 1767
Typ av publikation
tidskriftsartikel (1452)
konferensbidrag (109)
doktorsavhandling (98)
forskningsöversikt (60)
bokkapitel (28)
bok (6)
visa fler...
rapport (5)
samlingsverk (redaktörskap) (3)
annan publikation (2)
licentiatavhandling (2)
patent (1)
recension (1)
visa färre...
Typ av innehåll
refereegranskat (1543)
övrigt vetenskapligt/konstnärligt (206)
populärvet., debatt m.m. (18)
Författare/redaktör
Fu, Michael, 1963 (67)
Jankowska, Elzbieta (51)
Eiken, Ola (51)
Johansson, Helena, 1 ... (35)
Odén, Anders, 1942 (32)
Tribukait, Arne (29)
visa fler...
Birnir, Bryndis (28)
Wessberg, Johan, 196 ... (27)
Eriksson, Elias, 195 ... (27)
Lerner, Ulf H (27)
Schagatay, Erika (26)
Jonsdottir, Ingibjör ... (26)
Haraldsson, Börje, 1 ... (26)
Mekjavic, I.B. (24)
Hellstrand, Per (23)
Billig, Håkan, 1955 (23)
Blomgren, Klas, 1963 (22)
Hammar, Ingela, 1964 (22)
Hagberg, Henrik, 195 ... (21)
Stener-Victorin, Eli ... (21)
Keramidas, Michail E ... (21)
Ohlsson, Claes, 1965 (20)
Engel, Jörgen, 1942 (20)
Ljungqvist, Olle, 19 ... (19)
Wollmer, Per (19)
Dickson, Suzanne L., ... (19)
Egecioglu, Emil, 197 ... (19)
Kanis, J. A. (18)
Swärd, Karl (18)
Ekblom, Björn (18)
Sahlin, Kent (18)
Holm, Lena (17)
Nissbrandt, Hans, 19 ... (17)
Arheden, Håkan (17)
Wang, Xiaoyang, 1965 (17)
Zhu, Changlian, 1964 (17)
Arner, Anders (16)
Johnell, Olof (16)
Mallard, Carina, 196 ... (16)
Kadi, Fawzi, 1970- (16)
Kounalakis, S.N. (16)
Jansson, Thomas, 195 ... (15)
Mellström, Dan, 1945 (15)
Amon, M (15)
Hjalmarson, Åke, 193 ... (15)
Andersson, Johan (15)
Westberg, Lars, 1973 (15)
Johansson, Roland S (15)
Linnarsson, D (15)
Gennser, Mikael (15)
visa färre...
Lärosäte
Göteborgs universitet (870)
Lunds universitet (354)
Karolinska Institutet (243)
Uppsala universitet (193)
Kungliga Tekniska Högskolan (162)
Umeå universitet (128)
visa fler...
Chalmers tekniska högskola (92)
Örebro universitet (75)
Gymnastik- och idrottshögskolan (73)
Linköpings universitet (60)
Mittuniversitetet (46)
Malmö universitet (23)
Stockholms universitet (18)
Högskolan i Borås (11)
Högskolan Dalarna (11)
Luleå tekniska universitet (10)
Högskolan i Skövde (10)
Högskolan i Halmstad (8)
Högskolan Kristianstad (7)
Jönköping University (7)
Högskolan i Gävle (5)
Linnéuniversitetet (3)
Sveriges Lantbruksuniversitet (3)
Högskolan Väst (2)
RISE (2)
Karlstads universitet (2)
Handelshögskolan i Stockholm (1)
Södertörns högskola (1)
Försvarshögskolan (1)
VTI - Statens väg- och transportforskningsinstitut (1)
visa färre...
Språk
Engelska (1701)
Svenska (60)
Ryska (2)
Tyska (1)
Danska (1)
Norska (1)
visa fler...
Spanska (1)
visa färre...
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (1767)
Naturvetenskap (75)
Samhällsvetenskap (68)
Teknik (39)
Humaniora (12)
Lantbruksvetenskap (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy