SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Klinisk medicin) hsv:(Radiologi och bildbehandling)) srt2:(2010-2014) pers:(Tolmachev Vladimir) srt2:(2012)"

Sökning: (hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Klinisk medicin) hsv:(Radiologi och bildbehandling)) srt2:(2010-2014) pers:(Tolmachev Vladimir) > (2012)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Altai, Mohamed, et al. (författare)
  • Preclinical evaluation of anti-HER2 Affibody molecules site-specifically labeled with In-111 using a maleimido derivative of NODAGA
  • 2012
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier BV. - 0969-8051 .- 1872-9614. ; 39:4, s. 518-529
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Affibody molecules have demonstrated potential for radionuclide molecular imaging. The aim of this study was to synthesize and evaluate a maleimido derivative of the 1,4,7-triazacyclononane-l-glutaric acid-4,7-diacetic acid (NODAGA) for site-specific labeling of anti-HER2 Affibody molecule. Methods: The maleimidoethylmonoamide NODAGA (MMA-NODAGA) was synthesized and conjugated to Z(HER2:2395) Affibody molecule having a C-terminal cysteine. Labeling efficiency, binding specificity to and cell internalization by HER2-expressing cells of [In-111-MMA-NODAGA-Cys(61)]-Z(HER2:2395) were studied. Biodistribution of [In-111-MMA-NODAGA-Cys(61)]-Z(HER2:2395) and [In-111-MMA-DOTA-Cys(61)]-Z(HER2:2395) was compared in mice. Results: The affinity of [MMA-NODAGA-Cys(61)]-Z(HER2:2395) binding to HER2 was 67 pM. The In-1111-labeling yield was 99.6%+/- 0.5% after 30 min at 60 degrees C. [In-111-MMA-NODAGA-Cys(61)]-Z(HER2:2395) bound specifically to HER2-expressing cells in vitro and in vivo. Tumor uptake of [In-111-MMA-NODAGA-Cys(61)]-ZHER(2:2395) in mice bearing DU-145 xenografts (4.7%+/- 0.8% ID/g) was lower than uptake of [In-111-MMA-DOTA-Cys(61)]-Z(HER2:2395) (7.5%+/- 1.6% ID/g). However, tumor-to-organ ratios were higher for [In-111-MMA-NODAGA-Cys(61)]-Z(HER2:2395) due to higher clearance rate from normal tissues. Conclusions: MMA-NODAGA is a promising chelator for site-specific labeling of targeting proteins containing unpaired cysteine. Appreciable influence of chelators on targeting properties of Affibody molecules was demonstrated.
  •  
3.
  • Heskamp, Sandra, et al. (författare)
  • Imaging of Human Epidermal Growth Factor Receptor Type 2 Expression with (18)F-Labeled Affibody Molecule Z(HER2:2395) in a Mouse Model for Ovarian Cancer
  • 2012
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 53:1, s. 146-153
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules are small (7 kDa) proteins with subnanomolar targeting affinity. Previous SPECT studies in xenografts have shown that the Affibody molecule (111)In-DOTA-Z(HER2:2395) can discriminate between high and low human epidermal growth factor receptor type 2 (HER2)-expressing tumors, indicating that radiolabeled Affibody molecules have potential for patient selection for HER2-targeted therapy. Compared with SPECT, PET with positron-emitting radionuclides, such as (18)F, may improve imaging of HER2 expression because of higher sensitivity and improved quantification of PET. The aim of the present study was to determine whether the (18)F-labeled NOTA-conjugated Affibody molecule Z(HER2:2395) is a suitable agent for imaging of HER2 expression. The tumor-targeting properties of (18)F-labeled Z(HER2:2395) were compared with (111)In- and (68)Ga-labeled Z(HER2:2395) in mice with HER2-expressing SK-OV-3 xenografts. Methods: Z(HER2:2395) was conjugated with NOTA and radiolabeled with (18)F, (68)Ga, and (111)In. Radiolabeling with (18)F was based on the complexation of Al(18)F by NOTA. The 50% inhibitory concentration values for NOTA-Z(HER2:2395) labeled with (19)F, (69)Ga, and (115)In were determined in a competitive cell-binding assay using SK-OV-3 cells. Mice bearing subcutaneous SK-OV-3 xenografts were injected intravenously with radiolabeled NOTA-Z(HER2:2395). One and 4 h after injection, PET/CT or SPECT/CT images were acquired, and the biodistribution was determined by ex vivo measurement. Results: The 50% inhibitory concentration values for (19)F-, (69)Ga-, and (115)In-NOTA-Z(HER2:2395) were 5.0, 6.3, and 5.3 nM, respectively. One hour after injection, tumor uptake was 4.4 +/- 0.8 percentage injected dose per gram (% ID/g), 5.6 +/- 1.6 % ID/g, and 7.1 +/- 1.4 % ID/g for (18)F-, (68)Ga-, and (111)In-NOTA-Z(HER2:2395), respectively, and the respective tumor-to-blood ratios were 7.4 +/- 1.8, 8.0 +/- 1.3, and 4.8 +/- 1.3. Tumor uptake was specific, because uptake could be blocked efficiently by coinjection of an excess of unlabeled Z(HER2:2395). PET/CT and SPECT/CT images clearly visualized HER2-expressing SK-OV-3 xenografts. Conclusion: This study showed that (18)F-NOTA-Z(HER2:2395) is a promising new imaging agent for HER2 expression in tumors. Affibody molecules were successfully labeled with (18)F within 30 min, based on the complexation of Al(18)F by NOTA. Further research is needed to determine whether this technique can be used for patient selection for HER2-targeted therapy.
  •  
4.
  •  
5.
  • Malmberg, Jennie, et al. (författare)
  • Comparative evaluation of synthetic anti-HER2 Affibody molecules site-specifically labelled with In-111 using N-terminal DOTA, NOTA and NODAGA chelators in mice bearing prostate cancer xenografts
  • 2012
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 39:3, s. 481-492
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose In disseminated prostate cancer, expression of human epidermal growth factor receptor type 2 (HER2) is one of the pathways to androgen independence. Radionuclide molecular imaging of HER2 expression in disseminated prostate cancer might identify patients for HER2-targeted therapy. Affibody molecules are small (7 kDa) targeting proteins with high potential as tracers for radionuclide imaging. The goal of this study was to develop an optimal Affibody-based tracer for visualization of HER2 expression in prostate cancer. Methods A synthetic variant of the anti-HER2 Z(HER2:342) Affibody molecule, Z(HER2:S1), was N-terminally conjugated with the chelators DOTA, NOTA and NODAGA. The conjugated proteins were biophysically characterized by electrospray ionization mass spectroscopy (ESI-MS), circular dichroism (CD) spectroscopy and surface plasmon resonance (SPR)-based biosensor analysis. After labelling with In-111, the biodistribution was assessed in normal mice and the two most promising conjugates were further evaluated for tumour targeting in mice bearing DU-145 prostate cancer xenografts. Results The HER2-binding equilibrium dissociation constants were 130, 140 and 90 pM for DOTA-Z(HER2:S1), NOTA-Z(HER2:S1) and NODAGA-Z(HER2:S1), respectively. A comparative study of In-111-labelled DOTA-Z(HER2:S1), NOTA-Z(HER2:S1) and NODAGA-Z(HER2:S1) in normal mice demonstrated a substantial influence of the chelators on the biodistribution properties of the conjugates. In-111-NODAGA-Z(HER2:S1) had the most rapid clearance from blood and healthy tissues. In-111-NOTA-Z(HER2:S1) showed high hepatic uptake and was excluded from further evaluation. In-111-DOTA-Z(HER2:S1) and In-111-NODAGAZHER2: S1 demonstrated specific uptake in DU-145 prostate cancer xenografts in nude mice. The tumour uptake of In-111-NODAGA-Z(HER2:S1), 5.6 +/- 0.4% ID/g, was significantly lower than the uptake of In-111-DOTA-Z(HER2:S1), 7.4 +/- 0.5% ID/g, presumably because of lower bioavailability due to more rapid clearance. In-111-NODAGA-Z(HER2:S1) provided higher tumour-to-blood ratio, but somewhat lower tumour-to-liver, tumour-to-spleen and tumour-to-bone ratios. Conclusion Since distant prostate cancer metastases are situated in bone or bone marrow, the higher tumour-to-bone ratio is the most important. This renders In-111-DOTA-Z(HER2:S1) a preferable agent for imaging of HER2 expression in disseminated prostate cancer.
  •  
6.
  •  
7.
  • Tolmachev, Vladimir, et al. (författare)
  • Tumor Targeting Using Affibody Molecules : Interplay of Affinity, Target Expression Level, and Binding Site Composition
  • 2012
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 53:6, s. 953-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Radionuclide imaging of cancer-associated molecular alterations may contribute to patient stratification for targeting therapy. Scaffold high-affinity proteins, such as Affibody molecules, are a new, promising class of probes for in vivo imaging. Methods. The effects of human epidermal growth factor receptor 2 (HER2) affinity and binding site composition of HER2-binding Affibody molecules, and of the HER2 density on the tumor targeting, were studied in vivo. The tumor uptake and tumor-to-organ ratios of Affibody molecules with moderate (dissociation constant [K-D)] 10(-9) M) or high (K-D = 10(-10) M) affinity were compared between tumor xenografts with a high (SKOV-3) and low (LS174T) HER2 expression level in BALB/C nu/nu mice. Two Affibody molecules with similar affinity (K-D = 10(-10) M) but having alternative amino acids in the binding site were compared. Results. In SKOV-3 xenografts, uptake was independent of affinity at 4 h after injection, but high-affinity binders provided 2-fold-higher tumor radioactivity retention at 24 h. In LS174T xenografts, uptake of high-affinity probes was already severalfold higher at 4 h after injection, and the difference was increased at 24 h. The clearance rate and tumor-to-organ ratios were influenced by the amino acid composition of the binding surface of the tracer protein. Conclusion. The optimal affinity of HER2-binding Affibody molecules depends on the expression of a molecular target. At a high expression level (>10(6) receptors per cell), an affinity in the low-nanomolar range is sufficient. At moderate expression, subnanomolar affinity is desirable. The binding site composition can influence the imaging contrast. This information may be useful for development of imaging agents based on scaffold affinity proteins.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy