SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(hsv:(NATURVETENSKAP) hsv:(Biologi) hsv:(Biokemi och molekylärbiologi)) pers:(Uhlen Mathias) srt2:(2015-2019)"

Sökning: (hsv:(NATURVETENSKAP) hsv:(Biologi) hsv:(Biokemi och molekylärbiologi)) pers:(Uhlen Mathias) > (2015-2019)

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Uhlén, Mathias, et al. (författare)
  • The human secretome
  • 2019
  • Ingår i: Science Signaling. - : American Association for the Advancement of Science (AAAS). - 1945-0877 .- 1937-9145. ; 12:609
  • Tidskriftsartikel (refereegranskat)abstract
    • The proteins secreted by human cells (collectively referred to as the secretome) are important not only for the basic understanding of human biology but also for the identification of potential targets for future diagnostics and therapies. Here, we present a comprehensive analysis of proteins predicted to be secreted in human cells, which provides information about their final localization in the human body, including the proteins actively secreted to peripheral blood. The analysis suggests that a large number of the proteins of the secretome are not secreted out of the cell, but instead are retained intracellularly, whereas another large group of proteins were identified that are predicted to be retained locally at the tissue of expression and not secreted into the blood. Proteins detected in the human blood by mass spectrometry-based proteomics and antibody-based immuno-assays are also presented with estimates of their concentrations in the blood. The results are presented in an updated version 19 of the Human Protein Atlas in which each gene encoding a secretome protein is annotated to provide an open-access knowledge resource of the human secretome, including body-wide expression data, spatial localization data down to the single-cell and subcellular levels, and data about the presence of proteins that are detectable in the blood.
  •  
2.
  • Ayoglu, Burcu, et al. (författare)
  • Multiplexed protein profiling by sequential affinity capture
  • 2016
  • Ingår i: Proteomics. - : Wiley-Blackwell. - 1615-9853 .- 1615-9861. ; 16:8, s. 1251-1256
  • Tidskriftsartikel (refereegranskat)abstract
    • Antibody microarrays enable parallelized and miniaturized analysis of clinical samples, and have proven to provide novel insights for the analysis of different proteomes. However, there are concerns that the performance of such direct labeling and single antibody assays are prone to off-target binding due to the sample context. To improve selectivity and sensitivity while maintaining the possibility to conduct multiplexed protein profiling, we developed a multiplexed and semi-automated sequential capture assay. This novel bead-based procedure encompasses a first antigen capture, labeling of captured protein targets on magnetic particles, combinatorial target elution and a read-out by a secondary capture bead array. We demonstrate in a proof-of-concept setting that target detection via two sequential affinity interactions reduced off-target contribution, while lowered background and noise levels, improved correlation to clinical values compared to single binder assays. We also compared sensitivity levels with single binder and classical sandwich assays, explored the possibility for DNA-based signal amplification, and demonstrate the applicability of the dual capture bead-based antibody microarray for biomarker analysis. Hence, the described concept enhances the possibilities for antibody array assays to be utilized for protein profiling in body fluids and beyond.
  •  
3.
  • Hober, Andreas, et al. (författare)
  • Absolute Quantification of Apolipoproteins Following Treatment with Omega-3 Carboxylic Acids and Fenofibrate Using a High Precision Stable Isotope-labeled Recombinant Protein Fragments Based SRM Assay
  • 2019
  • Ingår i: Molecular & Cellular Proteomics. - : AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC. - 1535-9476 .- 1535-9484. ; 18:12, s. 2433-2446
  • Tidskriftsartikel (refereegranskat)abstract
    • Stable isotope-labeled standard (SIS) peptides are used as internal standards in targeted proteomics to provide robust protein quantification, which is required in clinical settings. However, SIS peptides are typically added post trypsin digestion and, as the digestion efficiency can vary significantly between peptides within a protein, the accuracy and precision of the assay may be compromised. These drawbacks can be remedied by a new class of internal standards introduced by the Human Protein Atlas project, which are based on SIS recombinant protein fragments called SIS PrESTs. SIS PrESTs are added initially to the sample and SIS peptides are released on trypsin digestion. The SIS PrEST technology is promising for absolute quantification of protein biomarkers but has not previously been evaluated in a clinical setting. An automated and scalable solid phase extraction workflow for desalting and enrichment of plasma digests was established enabling simultaneous preparation of up to 96 samples. Robust high-precision quantification of 13 apolipoproteins was achieved using a novel multiplex SIS PrEST-based LC-SRM/MS Tier 2 assay in non-depleted human plasma. The assay exhibited inter-day coefficients of variation between 1.5% and 14.5% (median = 3.5%) and was subsequently used to investigate the effects of omega-3 carboxylic acids (OM3-CA) and fenofibrate on these 13 apolipoproteins in human plasma samples from a randomized placebo-controlled trial, EFFECT I (NCT02354976). No significant changes were observed in the OM3-CA arm, whereas treatment with fenofibrate significantly increased apoAII and reduced apoB, apoCI, apoE and apoCIV levels. The reduction in apoCIV following fenofibrate treatment is a novel finding. The study demonstrates that SIS PrESTs can facilitate the generation of robust multiplexed biomarker Tier 2 assays for absolute quantification of proteins in clinical studies. Applications of LC-SRM in clinical research are still limited. SIS PrEST are a novel class of standards added prior to trypsinization. We have developed a semi-automated sample preparation workflow and a SIS PrEST LC-SRM/MS Tier 2 assay for absolute quantification of 13 apolipoproteins in human plasma and applied it on clinical samples from the EFFECT I study. We demonstrate, for the first time, that SIS PrEST can be applied for exploratory biomarker research in clinical settings and capture drug effects.
  •  
4.
  • Mardinoglu, Adil, 1982, et al. (författare)
  • Personal model-assisted identification of NAD(+) and glutathione metabolism as intervention target in NAFLD
  • 2017
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 13:3
  • Tidskriftsartikel (refereegranskat)abstract
    • To elucidate the molecular mechanisms underlying non-alcoholic fatty liver disease (NAFLD), we recruited 86 subjects with varying degrees of hepatic steatosis (HS). We obtained experimental data on lipoprotein fluxes and used these individual measurements as personalized constraints of a hepatocyte genome-scale metabolic model to investigate metabolic differences in liver, taking into account its interactions with other tissues. Our systems level analysis predicted an altered demand for NAD(+) and glutathione (GSH) in subjects with high HS. Our analysis and metabolomic measurements showed that plasma levels of glycine, serine, and associated metabolites are negatively correlated with HS, suggesting that these GSH metabolism precursors might be limiting. Quantification of the hepatic expression levels of the associated enzymes further pointed to altered de novo GSH synthesis. To assess the effect of GSH and NAD(+) repletion on the development of NAFLD, we added precursors for GSH and NAD(+) biosynthesis to the Western diet and demonstrated that supplementation prevents HS in mice. In a proof-of-concept human study, we found improved liver function and decreased HS after supplementation with serine (a precursor to glycine) and hereby propose a strategy for NAFLD treatment.
  •  
5.
  • Sjöstedt, Evelina, et al. (författare)
  • Integration of Transcriptomics and Antibody-Based Proteomics for Exploration of Proteins Expressed in Specialized Tissues
  • 2018
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 17:12, s. 4127-4137
  • Tidskriftsartikel (refereegranskat)abstract
    • A large portion of human proteins are referred to as missing proteins, defined as protein-coding genes that lack experimental data on the protein level due to factors such as temporal expression, expression in tissues that are difficult to sample, or they actually do not encode functional proteins. In the present investigation, an integrated omics approach was used for identification and exploration of missing proteins. Transcriptomics data from three different sourcesthe Human Protein Atlas (HPA), the GTEx consortium, and the FANTOM5 consortiumwere used as a starting point to identify genes selectively expressed in specialized tissues. Complementing the analysis with profiling on more specific tissues based on immunohistochemistry allowed for further exploration of cell-type-specific expression patterns. More detailed tissue profiling was performed for >300 genes on complementing tissues. The analysis identified tissue-specific expression of nine proteins previously listed as missing proteins (POU4F1, FRMD1, ARHGEF33, GABRG1, KRTAP2-1, BHLHE22, SPRR4, AVPR1B, and DCLK3), as well as numerous proteins with evidence of existence on the protein level that previously lacked information on spatial resolution and cell-type- specific expression pattern. We here present a comprehensive strategy for identification of missing proteins by combining transcriptomics with antibody-based proteomics. The analyzed proteins provide interesting targets for organ-specific research in health and disease.
  •  
6.
  • Thul, Peter J., et al. (författare)
  • An image-based subcellular map of the human proteome.
  • 2017
  • Ingår i: Molecular Biology of the Cell. - : The American Society for Cell Biology. - 1059-1524 .- 1939-4586. ; 28
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
7.
  • Tippmann, Stefan, 1986, et al. (författare)
  • Affibody Scaffolds Improve Sesquiterpene Production in Saccharomyces cerevisiae
  • 2017
  • Ingår i: ACS Photonics. - : American Chemical Society (ACS). - 2330-4022. ; 6:1, s. 19-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Enzyme fusions have been widely used as a tool in metabolic engineering to increase pathway efficiency by reducing substrate loss and accumulation of toxic intermediates. Alternatively, enzymes can be colocalized through attachment to a synthetic scaffold via noncovalent interactions. Here we describe the use of affibodies for enzyme tagging and scaffolding. The scaffolding is based on the recognition of affibodies to their anti-idiotypic partners in vivo, and was first employed for colocalization of farnesyl diphosphate synthase and farnesene synthase in S. cerevisiae. Different parameters were modulated to improve the system, and the enzyme:scaffold ratio was most critical for its functionality. Ultimately, the yield of farnesene on glucose YSFar could be improved by 135% in fed-batch cultivations using a 2-site affibody scaffold. The scaffolding strategy was then extended to a three-enzyme polyhydroxybutyrate (PHB) pathway, heterologously expressed in E. coli. Within a narrow range of enzyme and scaffold induction, the affibody tagging and scaffolding increased PHB production 7-fold. This work demonstrates how the versatile affibody can be used for metabolic engineering purposes.
  •  
8.
  • Yu, Nancy Yiu-Lin, et al. (författare)
  • Complementing tissue characterization by integrating transcriptome profiling from the Human Protein Atlas and from the FANTOM5 consortium
  • 2015
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 43:14, s. 6787-6798
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the normal state of human tissue transcriptome profiles is essential for recognizing tissue disease states and identifying disease markers. Recently, the Human Protein Atlas and the FANTOM5 consortium have each published extensive transcriptome data for human samples using Illumina-sequenced RNA-Seq and Heliscope-sequenced CAGE. Here, we report on the first large-scale complex tissue transcriptome comparison between full-length versus 5'-capped mRNA sequencing data. Overall gene expression correlation was high between the 22 corresponding tissues analyzed (R > 0.8). For genes ubiquitously expressed across all tissues, the two data sets showed high genome-wide correlation (91% agreement), with differences observed for a small number of individual genes indicating the need to update their gene models. Among the identified single-tissue enriched genes, up to 75% showed consensus of 7-fold enrichment in the same tissue in both methods, while another 17% exhibited multiple tissue enrichment and/or high expression variety in the other data set, likely dependent on the cell type proportions included in each tissue sample. Our results show that RNA-Seq and CAGE tissue transcriptome data sets are highly complementary for improving gene model annotations and highlight biological complexities within tissue transcriptomes. Furthermore, integration with image-based protein expression data is highly advantageous for understanding expression specificities for many genes.
  •  
9.
  • Huang, Mingtao, 1984, et al. (författare)
  • Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:34, s. E4689-E4696
  • Tidskriftsartikel (refereegranskat)abstract
    • There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant a-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330 mutations in total. Gene ontology analysis of mutated genes revealed many biological processes, including some that have not been identified before in the context of protein secretion. Mutated genes identified in this study can be potentially used for reverse metabolic engineering, with the objective to construct efficient cell factories for protein secretion. The combined use of microfluidics screening and whole-genome sequencing to map the mutations associated with the improved phenotype can easily be adapted for other products and cell types to identify novel engineering targets, and this approach could broadly facilitate design of novel cell factories.
  •  
10.
  • Uhlén, Mathias, et al. (författare)
  • Transcriptomics resources of human tissues and organs
  • 2016
  • Ingår i: Molecular Systems Biology. - : Blackwell Publishing. - 1744-4292 .- 1744-4292. ; 12:4
  • Forskningsöversikt (refereegranskat)abstract
    • Quantifying the differential expression of genes in various human organs, tissues, and cell types is vital to understand human physiology and disease. Recently, several large-scale transcriptomics studies have analyzed the expression of protein-coding genes across tissues. These datasets provide a framework for defining the molecular constituents of the human body as well as for generating comprehensive lists of proteins expressed across tissues or in a tissue-restricted manner. Here, we review publicly available human transcriptome resources and discuss body-wide data from independent genome-wide transcriptome analyses of different tissues. Gene expression measurements from these independent datasets, generated using samples from fresh frozen surgical specimens and postmortem tissues, are consistent. Overall, the different genome-wide analyses support a distribution in which many proteins are found in all tissues and relatively few in a tissue-restricted manner. Moreover, we discuss the applications of publicly available omics data for building genome-scale metabolic models, used for analyzing cell and tissue functions both in physiological and in disease contexts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26
Typ av publikation
tidskriftsartikel (23)
forskningsöversikt (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (22)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Uhlén, Mathias (25)
Schwenk, Jochen M. (9)
Nilsson, Peter (8)
Pontén, Fredrik (7)
Edfors, Fredrik (6)
Hallström, Björn M. (6)
visa fler...
Forsström, Björn (5)
Nielsen, Jens B, 196 ... (4)
Fagerberg, Linn (4)
Lundberg, Emma (4)
Danielsson, Frida (4)
Fredolini, Claudia (4)
Lindskog, Cecilia (3)
Hong, Mun-Gwan (3)
Tegel, Hanna (3)
Ayoglu, Burcu (3)
Stadler, Charlotte (3)
Mahdessian, Diana (3)
Kuster, Bernhard (3)
Wang, Dongxue (3)
Oksvold, Per (2)
Mardinoglu, Adil (2)
Sivertsson, Åsa (2)
Hellström, Cecilia (2)
Dodig-Crnkovic, Tea (2)
Mulder, Jan (2)
Mattsson, Cecilia (2)
Sjöberg, Ronald (2)
Häussler, Ragna S. (2)
Kotol, David (2)
Asplund, Anna (2)
Katona, Borbala (2)
Rockberg, Johan (2)
Schmidt, Tobias (2)
Wieland, Thomas (2)
Birgersson, Elin (2)
Iglesias, Maria Jesu ... (2)
Hjelmare, Martin (2)
Schutten, Rutger (2)
Vuu, Jimmy (2)
Sjöstedt, Evelina (2)
Byström, Sanna (2)
Gnann, Christian (2)
Qundos, Ulrika (2)
Åkesson, Lovisa (2)
Thul, Peter (2)
Wilhelm, Mathias (2)
Svensson, Anne-Sophi ... (2)
Hober, Andreas (2)
Eraslan, Basak (2)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (26)
Uppsala universitet (13)
Karolinska Institutet (7)
Chalmers tekniska högskola (5)
Göteborgs universitet (3)
Stockholms universitet (1)
Språk
Engelska (26)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (26)
Medicin och hälsovetenskap (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy