SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Naturgeografi)) pers:(Mölder Meelis) srt2:(2005-2009)"

Sökning: (hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Naturgeografi)) pers:(Mölder Meelis) > (2005-2009)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Duursma, R. A., et al. (författare)
  • Contributions of climate, leaf area index and leaf physiology to variation in gross primary production of six coniferous forests across Europe: a model-based analysis
  • 2009
  • Ingår i: Tree Physiology. - : Oxford University Press (OUP). - 1758-4469 .- 0829-318X. ; 29:5, s. 621-639
  • Tidskriftsartikel (refereegranskat)abstract
    • Gross primary production (GPP) is the primary source of all carbon fluxes in the ecosystem. Understanding, variation in this flux is vital to understanding variation in the carbon sink of forest ecosystems, and this would serve as input to forest production models. Using GPP derived from eddy-covariance (EC) Measurements, it is now possible to determine the most important factor to scale GPP across sites. We use long-term EC measurements for six coniferous forest stands in Europe, for a total of 25 site-years, located oil a gradient between Southern France and northern Finland. Eddy-derived GPP varied threefold across the six sites, peak ecosystem leaf area index (LAI) (all-sided) varied from 4 to 22 m(2) m(-2) and mean annual temperature varied from - 1 to 13 degrees C. A process-based model operating at a half-hourly time-step was parameterized with available information for each site, and explained 71-96% in variation between daily totals of GPP within site-years and 62% of annual total GPP across site-years. Using the parameterized model, we performed two simulation experiments: weather datasets were interchanged between sites, so that the model was used to predict GPP at some site using data from either a different year or a different site. The resulting bias in GPP prediction was related to several aggregated weather variables and was found to be closely related to the change in the effective temperature sum or mean annual temperature. High R(2)s resulted even when using weather datasets from unrelated sites, providing a cautionary note on the interpretation of R-2 ill model comparisons. A second experiment interchanged stand-structure information between sites. and the resulting bias was strongly related to the difference in LAI, or the difference in integrated absorbed light. Across the six sites. variation in mean annual temperature had more effect on simulated GPP than the variation in LAI. but both were important determinants of GPP. A sensitivity analysis of leaf physiology parameters showed that the quantum yield was the most influential parameter on annual GPP, followed by a parameter controlling the seasonality of photosynthesis and photosynthetic capacity. Overall, the results are promising for the development of a parsimonious model of GPP.
  •  
4.
  • Feigenwinter, Christian, et al. (författare)
  • Comparison of horizontal and vertical advective CO2 fluxes at three forest sites
  • 2008
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 148:1, s. 12-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive field measurements have been performed at three CarboEurope-Integrated Project forest sites with different topography (Renon/Ritten, Italian Alps, Italy; Wetzstein, Thuringia, Germany; Norunda, Uppland, Sweden) to evaluate the relevant terms of the carbon balance by measuring CO2 concentrations [CO2] and the wind field in a 3D multi-tower cube setup. The same experimental setup (geometry and instrumentation) and the same methodology were applied to all the three experiments. It is shown that all sites are affected by advection in different ways and strengths. Everywhere, vertical advection (F-VA) occurred only at night. During the day, F-VA disappeared because of turbulent mixing, leading to a uniform vertical profile of [CO2]. Mean F-VA was nearly zero at the hilly site (wetzstein) and at the flat site (Norunda). However, large, momentary positive or negative contributions occurred at the flat site, whereas vertical non-turbulent fluxes were generally very small at the hilly site. At the slope site (Renon), F-VA was always positive at night because of the permanently negative mean vertical wind component resulting from downslope winds. Horizontal advection also occurred mainly at night. It was positive at the slope site and negative at the flat site in the mean diurnal course. The size of the averaged non-turbulent advective fluxes was of the same order of magnitude as the turbulent flux measured by eddy-covariance technique, but the scatter was very high. This implies that it is not advisable to use directly measured quantities of the non-turbulent advective fluxes for the estimation of net ecosystem exchange (NEE) on e.g. an hourly basis. However, situations with and without advection were closely related to local or synoptic meteorological conditions. Thus, it is possible to separate advection affected NEE estimates from fluxes which are representative of the source term. However, the development of a robust correction scheme for advection requires a more detailed site-specific analysis of single events for the identification of the relevant processes. This paper presents mean characteristics of the advective CO2 fluxes in a first site-to-site comparison and evaluates the main problems for future research.
  •  
5.
  • Lagergren, Fredrik, et al. (författare)
  • Biophysical controls on CO2 fluxes of three Northern forets based on long-term eddy covariance data.
  • 2008
  • Ingår i: Tellus. Series B: Chemical and Physical Meteorology. - : Stockholm University Press. - 0280-6509. ; 60:2, s. 143-152
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract in UndeterminedSix to nine years of net ecosystem carbon exchange (NEE) data from forests in Hyytiala in Finland, Soro in Denmark and Norunda in Sweden were used to evaluate the interannual variation in the carbon balance. For half-monthly periods, average NEE was calculated for the night-time data. For the daytime data parameters were extracted for the relationship to photosynthetic active radiation (PAR). The standard deviation of the parameters was highest for Norunda where it typically was around 25% of the mean, while it was ca. 15% for Hyytiala and Soro. Temperature was the main controller of respiration and photosynthetic capacity in autumn, winter and spring but explained very little of the interannual variation in summer. A strong correlation between respiration and photosynthesis was also revealed. The start, end and length of the growing season were estimated by four different criteria. The start date could explain some of the variation in yearly total NEE and gross primary productivity (GPP) in Hyytiala and Soro, but the average maximum photosynthetic capacity in summer explained more of the variation in annual GPP for all sites than start, end or length of the growing season.
  •  
6.
  • Lagergren, Fredrik, et al. (författare)
  • Current carbon balance of the forested area in Sweden and its sensitivity to global change as simulated by Biome-BGC
  • 2006
  • Ingår i: Ecosystems. - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 9:6, s. 894-908
  • Tidskriftsartikel (refereegranskat)abstract
    • Detailed information from the Swedish National Forest Inventory was used to simulate the carbon balance for Sweden by the process-based model Biome-BGC. A few shortcomings of the model were identified and solutions to those are proposed and also used in the simulations. The model was calibrated against CO2 flux data from 3 forests in central Sweden and then applied to the whole country divided into 30 districts and 4 age classes. Gross primary production (GPP) ranged over districts and age classes from 0.20 to 1.71 kg C m(-2) y(-1) and net ecosystem production (NEP) ranged from -0.01 to 0.44. The 10- to 30-year age class was the strongest carbon sink because of its relatively low respiration rates. When the simulation results were scaled up to the whole country, GPP and NEP were 175 and 29 Mton C y(-1), respectively, for the 22.7 Mha of forests in Sweden. A climate change scenario was simulated by assuming a 4 degrees C increase in temperature and a doubling of the CO2 concentration; GPP and NEP then increased to 253 and 48 Mton C y(-1), respectively. A sensitivity analysis showed that at present CO2 concentrations NEP would peak at an increase of 5 degrees C for the mean annual temperature. At higher CO2 levels NEP showed a logarithmic increase.
  •  
7.
  •  
8.
  • Lagergren, Fredrik, et al. (författare)
  • Net primary production and light use efficiency in a mixed coniferous forest in Sweden
  • 2005
  • Ingår i: Plant, Cell and Environment. - : Wiley. - 0140-7791 .- 1365-3040. ; 28:3, s. 412-423
  • Tidskriftsartikel (refereegranskat)abstract
    • Simple light use efficiency (epsilon) models of net primary production (NPP) have recently been given great attention (NPP = epsilon x absorbed photosynthetically active radiation). The underlying relationships have, however, not been much studied on a time step less than a month. In this study daily NPP was estimated as the sum of net ecosystem exchange (NEE) and heterotrophic respiration (R-h) of a mixed pine and spruce forest in Sweden. NEE was measured by eddy correlation technique and R-h was estimated from measurements of forest floor respiration (R-f) and the root share of R-f. The total yearly NPP was on average 810 g C m(-2) year(-1) for 3 years and yearly epsilon was between 0.58 and 0.71 g C MJ(-1), which is high in comparison with other studies. There was a seasonal trend in epsilon with a relatively constant level of approximately 0.90 g C MJ(-1) from April to September Daily NPP did not increase for daily intercepted radiation above 6 MJ m(-2) d(-1), indicating that between-years variation in NPP is not directly dependent on total Q(i). The light was most efficiently used at an average daytime temperature of around 15 degreesC. At daytime vapour pressure deficit above 1400 Pa epsilon was reduced by approximately 50%.
  •  
9.
  • Lagergren, Fredrik, et al. (författare)
  • Thinning effects on pine-spruce forest transpiration in central Sweden
  • 2008
  • Ingår i: Forest Ecology and Management. - : Elsevier BV. - 1872-7042 .- 0378-1127. ; 255:7, s. 2312-2323
  • Tidskriftsartikel (refereegranskat)abstract
    • This study analyses the effects of thinning on stand transpiration in a typical mixed spruce and pine forest in the southern boreal zone. Studies of transpiration are important for models of water, energy and carbon exchange, and forest management, like thinning, would change those processes. Tree transpiration was measured by the tissue heat-balance sapflow technique, on a reference plot and a thinning plot situated in a 50-year-old stand in central Sweden. Sapflow was measured during one season (1998) on both plots before thinning, to establish reference values. In winter 1998/1999 24% of the basal area was removed from the thinning plot. Thinning was done so as to preserve the initial species composition and the size distribution. The measurements continued after thinning during the growing seasons of 1999 and 2000. The climate showed remarkable differences between the 3 years; 1998 was wet and cool, with frequent rain, and the soil-water content was high throughout the year. In contrast, 1999 was dry and warm, and the soil-water content decreased to very low values, ca. 5-6% by volume. In 2000, the weather was more normal, with variable conditions. Stand transpiration was similar on both plots during the year before thinning; the plot to be thinned transpired 6% more than the reference plot. After thinning, transpiration was initially ca. 40% lower on the thinned plot, but the difference diminished successively. When the following drought was at its worst, the thinned plot transpired up to seven times more than the reference plot. During the second season after thinning, the thinned plot transpired ca. 20% more than the reference plot. The increased transpiration of the thinned plot could not be attributed to environmental variables, but was most probably caused by changes in biological factors, such as a fertilization effect.
  •  
10.
  • Launiainen, S, et al. (författare)
  • Vertical variability and effect of stability on turbulence characteristics down to the forest floor of a pine forest.
  • 2007
  • Ingår i: Tellus. Series B: Chemical and Physical Meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 59, s. 919-936
  • Tidskriftsartikel (refereegranskat)abstract
    • Among the fundamental problems in canopy turbulence, particularly near the forest floor, remain the local diabatic effects and linkages between turbulent length scales and the canopy morphology. To progress on these problems, mean and higher order turbulence statistics are collected in a uniform pine forest across a wide range of atmospheric stability conditions using five 3-D anemometers in the subcanopy. The main novelties from this experiment are: (1) the agreement between second-order closure model results and measurements suggest that diabatic states in the layer above the canopy explain much of the modulations of the key velocity statistics inside the canopy except in the immediate vicinity of the trunk space and for very stable conditions. (2) The dimensionless turbulent kinetic energy in the trunk space is large due to a large longitudinal velocity variance but it is inactive and contributes little to momentum fluxes. (3) Near the floor layer, a logarithmic mean velocity profile is formed and vertical eddies are strongly suppressed modifying all power spectra. (4) A spectral peak in the vertical velocity near the ground commensurate with the trunk diameter emerged at a moderate element Reynolds number consistent with Strouhal instabilities describing wake production.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy