SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(swepub) pers:(Ågren Hans) srt2:(2020-2024)"

Sökning: (swepub) pers:(Ågren Hans) > (2020-2024)

  • Resultat 1-10 av 174
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Demirbay, Baris, et al. (författare)
  • Photo-physical characterization of high triplet yield brominated fluoresceins by transient state (TRAST) spectroscopy
  • 2023
  • Ingår i: Methods and applications in fluorescence. - : IOP Publishing. - 2050-6120. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Photo-induced dark transient states of fluorophores can pose a problem in fluorescence spectroscopy. However, their typically long lifetimes also make them highly environment sensitive, suggesting fluorophores with prominent dark-state formation yields to be used as microenvironmental sensors in bio-molecular spectroscopy and imaging. In this work, we analyzed the singlet-triplet transitions of fluorescein and three synthesized carboxy-fluorescein derivatives, with one, two or four bromines linked to the anthracence backbone. Using transient state (TRAST) spectroscopy, we found a prominent internal heavy atom (IHA) enhancement of the intersystem crossing (ISC) rates upon bromination, inferred by density functional theory calculations to take place via a higher triplet state, followed by relaxation to the lowest triplet state. A corresponding external heavy atom (EHA) enhancement was found upon adding potassium iodide (KI). Notably, increased KI concentrations still resulted in lowered triplet state buildup in the brominated fluorophores, due to relatively lower enhancements in ISC, than in the triplet decay. Together with an antioxidative effect on the fluorophores, adding KI thus generated a fluorescence enhancement of the brominated fluorophores. By TRAST measurements, analyzing the average fluorescence intensity of fluorescent molecules subject to a systematically varied excitation modulation, dark state transitions within very high triplet yield (>90%) fluorophores can be directly analyzed under biologically relevant conditions. These measurements, not possible by other techniques such as fluorescence correlation spectroscopy, opens for bio-sensing applications based on high triplet yield fluorophores, and for characterization of high triplet yield photodynamic therapy agents, and how they are influenced by IHA and EHA effects.
  •  
2.
  • Adranno, Brando, et al. (författare)
  • The 8-hydroxyquinolinium cation as a lead structure for efficient color-tunable ionic small molecule emitting materials
  • 2023
  • Ingår i: Advanced Photonics Research. - : John Wiley & Sons. - 2699-9293. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Albeit tris(8-hydroxyquinolinato) aluminum (Alq3) and its derivatives are prominent emitter materials for organic lighting devices, and the optical transitions occur among ligand-centered states, the use of metal-free 8-hydroxyquinoline is impractical as it suffers from strong nonradiative quenching, mainly through fast proton transfer. Herein, it is shown that the problem of rapid proton exchange and vibration quenching of light emission can be overcome not only by complexation, but also by organization of the 8-hydroxyquinolinium cations into a solid rigid network with appropriate counter-anions (here bis(trifluoromethanesulfonyl)imide). The resulting structure is stiffened by secondary bonding interactions such as pi-stacking and hydrogen bonds, which efficiently block rapid proton transfer quenching and reduce vibrational deactivation. Additionally, the optical properties are tuned through methyl substitution from deep blue (455 nm) to blue-green (488 nm). Time-dependent density functional theory (TDFT) calculations reveal the emission to occur from which an unexpectedly long-lived S-1 level, unusual for organic fluorophores. All compounds show comparable, even superior photoluminescence compared to Alq3 and related materials, both as solids and thin films with quantum yields (QYs) up to 40-50%. In addition, all compounds show appreciable thermal stability with decomposition temperatures above 310 °C.
  •  
3.
  • Renier, Olivier, et al. (författare)
  • Shape Preserving Single Crystal to Amorphous to Single Crystal Polymorphic Transformation Is Possible
  • 2021
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 143:48, s. 20202-20206
  • Tidskriftsartikel (refereegranskat)abstract
    • Many crystalline materials form polymorphs and undergo solid–solid transitions between different forms as a function of temperature or pressure. However, there is still a poor understanding of the mechanism of transformation. Conclusions about the transformation process are typically drawn by comparing the crystal structures before and after the conversion, but gaining detailed mechanistic knowledge is strongly impeded by the generally fast rate of these transitions. When the crystal morphology does not change, it is assumed that crystallinity is maintained throughout the process. Here we report transformation between polymorphs of ZnCl2(1,3-diethylimidazole-2-thione)2 which are sufficiently slow to allow unambiguous assignment of single crystal to single crystal transformation with shape preservation proceeding through an amorphous intermediate phase. This result fundamentally challenges the commonly accepted views of polymorphic phase transition mechanisms.
  •  
4.
  • Nag, S., et al. (författare)
  • Development of 11C-Labeled ASEM Analogues for the Detection of Neuronal Nicotinic Acetylcholine Receptors (α7-nAChR)
  • 2022
  • Ingår i: ACS Chemical Neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 13:3, s. 352-362
  • Tidskriftsartikel (refereegranskat)abstract
    • The homo-pentameric alpha 7 receptor is one of the major types of neuronal nicotinic acetylcholine receptors (α7-nAChRs) related to cognition, memory formation, and attention processing. The mapping of α7-nAChRs by PET pulls a lot of attention to realize the mechanism and development of CNS diseases such as AD, PD, and schizophrenia. Several PET radioligands have been explored for the detection of the α7-nAChR. 18F-ASEM is the most functional for in vivo quantification of α7-nAChRs in the human brain. The first aim of this study was to initially use results from in silico and machine learning techniques to prescreen and predict the binding energy and other properties of ASEM analogues and to interpret these properties in terms of atomic structures using 18F-ASEM as a lead structure, and second, to label some selected candidates with carbon-11/hydrogen-3 (11C/3H) and to evaluate the binding properties in vitro and in vivo using the labeled candidates. In silico predictions are obtained from perturbation free-energy calculations preceded by molecular docking, molecular dynamics, and metadynamics simulations. Machine learning techniques have been applied for the BBB and P-gp-binding properties. Six analogues of ASEM were labeled with 11C, and three of them were additionally labeled with 3H. Binding properties were further evaluated using autoradiography (ARG) and PET measurements in non-human primates (NHPs). Radiometabolites were measured in NHP plasma. All six compounds were successfully synthesized. Evaluation with ARG showed that 11C-Kln83 was preferably binding to the α7-nAChR. Competition studies showed that 80% of the total binding was displaced. Further ARG studies using 3H-KIn-83 replicated the preliminary results. In the NHP PET study, the distribution pattern of 11C-KIn-83 was similar to other α7 nAChR PET tracers. The brain uptake was relatively low and increased by the administration of tariquidar, indicating a substrate of P-gp. The ASEM blocking study showed that 11C-KIn-83 specifically binds to α7 nAChRs. Preliminary in vitro evaluation of KIn-83 by ARG with both 11C and 3H and in vivo evaluation in NHP showed favorable properties for selectively imaging α7-nAChRs, despite a relatively low brain uptake.
  •  
5.
  • Natarajan Arul, Murugan, et al. (författare)
  • Cryptic Sites in Tau Fibrils Explain the Preferential Binding of the AV-1451 PET Tracer toward Alzheimer's Tauopathy
  • 2021
  • Ingår i: ACS Chemical Neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 12:13, s. 2437-2447
  • Tidskriftsartikel (refereegranskat)abstract
    • Tauopathies are a subclass of neurodegenerative diseases characterized by an accumulation of microtubule binding tau fibrils in brain regions. Diseases such as Alzheimer's (AD), chronic traumatic encephalopathy (CTE), Pick's disease (PiD), and corticobasal degeneration (CBD) belong to this subclass. Development of tracers which can visualize and discriminate between different tauopathies is of clinical importance in the diagnosis of various tauopathies. Currently, several tau tracers are available for in vivo imaging using a positron emission tomography (PET) technique. Among these tracers, PBB3 is reported to bind to various types of tau fibrils with comparable binding affinities. In contrast, tau tracer AV-1451 is reported to bind to specific types of tau fibrils (in particular to AD-associated and CTE) with higher binding affinity and only show nonspecific or weaker binding toward tau fibrils dominant with 3R isoforms (associated with PiD). The tau fibrils associated with different tauopathies can adopt different microstructures with different binding site microenvironments. By using detailed studies of the binding profiles of tau tracers for different types of tau fibrils, it may be possible to design tracers with high selectivity toward a specific tauopathy. The microstructures for the tau fibrils from patients with AD, PiD, and CTE have recently been demonstrated by cryogenic electron microscopy (cryo-EM) measurements allowing structure-based in silico simulations. In the present study, we have performed a multiscale computational study involving molecular docking, molecular dynamics, free energy calculations, and QM fragmentation calculations to understand the binding profiles of tau tracer AV-1451 and its potential use for diagnosis of AD, CTE, and PiD tauopathies. Our computational study reveals that different affinity binding sites exist for AV-1451 in the tau fibrils associated with different tauopathies. The binding affinity of this tracer toward different tau fibrils goes in this order: PiD > AD > CTE. The interaction energies for different tau fibril-tracer complexes using the QM fragmentation scheme also showed the same trend. However, by carrying out molecular dynamics simulations for the AD-derived tau fibrils in organic solvents, we found additional high affinity binding sites for AV-1451. The AV-1451 binding profile in these cryptic sites correctly explains the preferential binding of this tracer toward the AD fibrils when compared with the PiD fibrils. This study clearly demonstrates having a cryo-EM structure is still not sufficient for the structure-based tracer discovery for certain targets, as they may have "potential but hidden" high affinity binding sites, and we need additional strategies to identify them.
  •  
6.
  • Zhou, Yang, et al. (författare)
  • In silico studies of ASEM analogues targeting alpha 7-nAChR and experimental verification
  • 2021
  • Ingår i: RSC Advances. - : ROYAL SOC CHEMISTRY. - 2046-2069. ; 11:7, s. 3942-3951
  • Tidskriftsartikel (refereegranskat)abstract
    • The alpha 7 nicotinic acetylcholine receptor (alpha 7-nAChR) is implicated in a variety of neurodegenerative and neuropsychiatric disorders, such as Alzheimer's disease (AD) and schizophrenia. The progress of these disorders can be studied using positron emission tomography (PET) with radiotracers for alpha 7-nAChR. [F-18]ASEM and [F-18] para-ASEM (also referred to as [F-18]DBT-10) are novel and potent alpha 7-nAChR PET radiotracers which have successfully been used in human subjects and nonhuman primates, though further improvement of them is still a pressing task in the community of neurodegeneration research. In this work, we demonstrate the use of modern in silico techniques to predict the binding modes, binding strengths, and residence times for molecular PET tracers binding to proteins, using ASEM and DBT-10 as a showcase of the predictive and interpretational power of such techniques, in particular free energy perturbation theory. The corresponding compounds were synthesized and further tested by in vitro binding experiment for validation. Encouragingly, our in silico modeling can correctly predict the binding affinities of the ASEM analogues. The structure-activity relationships for the ortho- and para-substitutions are well explained at the atomistic level and provide structure-based guiding for the future development of PET tracers for alpha 7-nAChR. A discussion is presented on the complementary use of in silico rational methods based on atomic and electronic principles for in vitro characterization of PET tracers.
  •  
7.
  • Banerjee, Saikat, et al. (författare)
  • Interacting Dirac materials
  • 2020
  • Ingår i: Journal of Physics. - : IOP Publishing. - 0953-8984 .- 1361-648X. ; 32:40
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the extent to which the class of Dirac materials in two-dimensions provides general statements about the behavior of both fermionic and bosonic Dirac quasiparticles in the interacting regime. For both quasiparticle types, we find common features for the interaction induced renormalization of the conical Dirac spectrum. We perform the perturbative renormalization analysis and compute the self-energy for both quasiparticle types with different interactions and collate previous results from the literature whenever necessary. Guided by the systematic presentation of our results in table1, we conclude that long-range interactions generically lead to an increase of the slope of the single-particle Dirac cone, whereas short-range interactions lead to a decrease. The quasiparticle statistics does not qualitatively impact the self-energy correction for long-range repulsion but does affect the behavior of short-range coupled systems, giving rise to different thermal power-law contributions. The possibility of a universal description of the Dirac materials based on these features is also mentioned.
  •  
8.
  • Du, Zhixue, et al. (författare)
  • Imaging Fluorescence Blinking of a Mitochondrial Localization Probe : Cellular Localization Probes Turned into Multifunctional Sensors br
  • 2022
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 126:16, s. 3048-3058
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial membranes and their microenviron-ments directly influence and reflect cellular metabolic states but aredifficult to probe on site in live cells. Here, we demonstrate astrategy, showing how the widely used mitochondrial membranelocalizationfluorophore 10-nonyl acridine orange (NAO) can betransformed into a multifunctional probe of membrane micro-environments by monitoring its blinking kinetics. By transient state(TRAST) studies of NAO in small unilamellar vesicles (SUVs),together with computational simulations, we found that NAOexhibits prominent reversible singlet-triplet state transitions andcan act as a light-induced Lewis acid forming a red-emissivedoublet radical. The resulting blinking kinetics are highlyenvironment-sensitive, specifically reflecting local membrane oxy-gen concentrations, redox conditions, membrane charge,fluidity, and lipid compositions. Here, not only cardiolipin concentrationbut also the cardiolipin acyl chain composition was found to strongly influence the NAO blinking kinetics. The blinking kinetics alsoreflect hydroxyl ion-dependent transitions to and from thefluorophore doublet radical, closely coupled to the proton-transfer eventsin the membranes, local pH, and two- and three-dimensional buffering properties on and above the membranes. Following the SUVstudies, we show by TRAST imaging that thefluorescence blinking properties of NAO can be imaged in live cells in a spatiallyresolved manner. Generally, the demonstrated blinking imaging strategy can transform existingfluorophore markers intomultiparametric sensors reflecting conditions of large biological relevance, which are difficult to retrieve by other means. This opensadditional possibilities for fundamental membrane studies in lipid vesicles and live cells
  •  
9.
  • Zhao, Xue, et al. (författare)
  • Simultaneous anchoring of Ni nanoparticles and single-atom Ni on BCN matrix promotes efficient conversion of nitrate in water into high-value-added ammonia
  • 2022
  • Ingår i: Chemical Engineering Journal. - : Elsevier. - 1385-8947 .- 1873-3212. ; 433:Part 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochemical synthesis of ammonia driven by clean energy is expected to realize the supply of ammonia for distributed production of industry and agriculture. Here, nickel nanoparticles and nickel in the form of single atoms were simultaneously anchored on the electrochemically active carrier BCN matrix through a structured domain strategy, which realized a high-efficiency, high-value-added, conversion of nitrate in sewage. Specifically, the electrochemical nitrate reduction reaction (NIRR) driven by BCN@Ni in alkaline media achieves an ammonia yield rate as high as 2320.2 μg h−1 cm−2 (at −0.5 V vs RHE), and Faraday efficiency as high as 91.15% (at −0.3 V vs RHE). Even in neutral and acidic media, the ammonia yield rates of NIRR driven by BCN@Ni are as high as 1904.2 μg h−1 cm−2 and 2057.4 μg h−1 cm−2, respectively (at −0.4 V vs RHE). The 15NO3- isotope labeling experiment verified that the recorded ammonia all came from the electrochemical reduction of NO3– on BCN@Ni. Density functional theory (DFT) calculations show that both nano-Ni and single-atom Ni in BCN@Ni have the ability to electrochemically convert NO3– into NH3, and that the addition of BCN can further promote the NIRR on Ni.
  •  
10.
  • Ideböhn, Veronica, 1992, et al. (författare)
  • Symmetry breaking in core-valence double ionisation of allene
  • 2023
  • Ingår i: Communications Chemistry. - : Springer Nature. - 2399-3669. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Allene serves as a model to study multiple ionization of organic molecules. Here, the authors use synchrotron radiation-based multi-particle coincidence techniques and high-level ab initio calculations to propose a simple physical model to elucidate the symmetry breaking in core-valence double ionization of allene. Conventional electron spectroscopy is an established one-electron-at-the-time method for revealing the electronic structure and dynamics of either valence or inner shell ionized systems. By combining an electron-electron coincidence technique with the use of soft X-radiation we have measured a double ionisation spectrum of the allene molecule in which one electron is removed from a C1s core orbital and one from a valence orbital, well beyond Siegbahns Electron-Spectroscopy-for-Chemical-Analysis method. This core-valence double ionisation spectrum shows the effect of symmetry breaking in an extraordinary way, when the core electron is ejected from one of the two outer carbon atoms. To explain the spectrum we present a new theoretical approach combining the benefits of a full self-consistent field approach with those of perturbation methods and multi-configurational techniques, thus establishing a powerful tool to reveal molecular orbital symmetry breaking on such an organic molecule, going beyond Lowdins standard definition of electron correlation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 174
Typ av publikation
tidskriftsartikel (160)
forskningsöversikt (11)
doktorsavhandling (2)
bokkapitel (1)
Typ av innehåll
refereegranskat (170)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Ågren, Hans (168)
Baryshnikov, Glib (41)
Kuklin, Artem V. (33)
Baryshnikov, Gleb V. (33)
Zhang, Han (17)
Xie, Yongshu (17)
visa fler...
Li, Chengjie (16)
Li, Qizhao (16)
Minaev, Boris F. (15)
Gao, Lingfeng (12)
Zhang, Haibo (11)
Zhu, Liangliang (10)
Sha, Feng (10)
Zhu, Bin (9)
Li, Junhao (9)
Zhao, Xue (7)
Valiev, Rashid R. (7)
Zhang, Jinglai (7)
Baryshnikov, Glib V. (7)
Shen, Shen (7)
Wu, Xinyan (7)
Carravetta, Vincenzo (6)
Liu, Haichun (6)
Minaev, Boris (6)
Stakhira, Pavlo (6)
Li, X. (5)
Zhu, L (5)
Zhang, Man (5)
Widengren, Jerker (5)
Nordberg, Agneta (5)
Wang, Li (5)
Suresh, Rahul (5)
Volyniuk, Dmytro (5)
Couto, Rafael Carval ... (5)
Karaush-Karmazin, Na ... (5)
Li, Zhongyu (5)
Björneholm, Olle (4)
Rubensson, Jan-Erik (4)
Långström, Bengt (4)
Zhang, Ye (4)
Ivaniuk, Khrystyna (4)
Begunovich, Lyudmila ... (4)
Polyutov, Sergey P. (4)
Chen, Hualong (4)
Karaush-Karmazin, Na ... (4)
Wu, Bin (4)
Deng, Xuefan (4)
Gerasimov, V. S. (4)
Polyutov, S. P. (4)
Yamada, Yoichi (4)
visa färre...
Lärosäte
Uppsala universitet (116)
Kungliga Tekniska Högskolan (75)
Linköpings universitet (42)
Karolinska Institutet (10)
Göteborgs universitet (6)
Lunds universitet (6)
visa fler...
Stockholms universitet (4)
Umeå universitet (2)
visa färre...
Språk
Engelska (174)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (163)
Medicin och hälsovetenskap (15)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy