SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska och farmaceutiska grundvetenskaper Farmaceutiska vetenskaper) srt2:(2020-2024)"

Sökning: AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska och farmaceutiska grundvetenskaper Farmaceutiska vetenskaper) > (2020-2024)

  • Resultat 1-10 av 797
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Solinas, Giovanni, et al. (författare)
  • An adipoincretin effect links adipostasis with insulin secretion.
  • 2024
  • Ingår i: Trends in endocrinology and metabolism: TEM. - 1879-3061. ; 35:6, s. 466-477
  • Forskningsöversikt (refereegranskat)abstract
    • The current paradigm for the insulin system focuses on the phenomenon of glucose-stimulated insulin secretion and insulin action on blood glucose control. This historical glucose-centric perspective may have introduced a conceptual bias in our understanding of insulin regulation. A body of evidence demonstrating that in vivo variations in blood glucose and insulin secretion can be largely dissociated motivated us to reconsider the fundamental design of the insulin system as a control system for metabolic homeostasis. Here, we propose that a minimal glucose-centric model does not accurately describe the physiological behavior of the insulin system and propose a new paradigm focusing on the effects of incretins, arguing that under fasting conditions, insulin is regulated by an adipoincretin effect.
  •  
2.
  • Rube, Tanja, et al. (författare)
  • Development of the Swedish anticholinergic burden scale (Swe-ABS).
  • 2023
  • Ingår i: BMC geriatrics. - 1471-2318. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Drugs with anticholinergic properties are associated with cognitive adverse effects, especially in patients vulnerable to central muscarinic antagonism. A variety of drugs show weak, moderate or strong anticholinergic effects. Therefore, the cumulative anticholinergic burden should be considered in patients with cognitive impairment. This study aimed to develop a Swedish Anticholinergic Burden Scale (Swe-ABS) to be used in health care and research.A systematic literature review was conducted in PubMed and Ovid Embase to identify previously published tools quantifying anticholinergic drug burden (i.e., exposure). Drugs and grading scores (0-3, no to high anticholinergic activity) were extracted from identified lists. Enteral and parenteral drugs authorized in Sweden were included. Drugs with conflicting scores in the existing lists were assessed by an expert group. Two drugs that were not previously assessed were also added to the evaluation process.The systematic literature search identified the following nine anticholinergic burden scales: Anticholinergic Activity Scale, Anticholinergic Burden Classification, updated Anticholinergic Cognitive Burden scale, Anticholinergic Drug Scale, Anticholinergic Load Scale, Anticholinergic Risk Scale, updated Clinician-rated Anticholinergic Scale, German Anticholinergic Burden Scale and Korean Anticholinergic Burden Scale. A list of drugs with significant anticholinergic effects provided by The Swedish National Board of Health and Welfare was included in the process. The suggested Swe-ABS consists of 104 drugs scored as having weak, moderate or strong anticholinergic effects. Two hundred and fifty-six drugs were listed as having no anticholinergic effects based on evaluation in previous scales. In total, 62 drugs were assessed by the expert group.Swe-ABS is a simplified method to quantify the anticholinergic burden and is easy to use in clinical practice. Publication of this scale might make clinicians more aware of drugs with anticholinergic properties and patients' total anticholinergic burden. Further research is needed to validate the Swe-ABS and evaluate anticholinergic exposure versus clinically significant outcomes.
  •  
3.
  • Mohammadi, Elyas, et al. (författare)
  • Applications of Genome-Wide Screening and Systems Biology Approaches in Drug Repositioning
  • 2020
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 12:9, s. 1-24
  • Forskningsöversikt (refereegranskat)abstract
    • Simple Summary Drug repurposing is an accelerated route for drug development and a promising approach for finding medications for orphan and common diseases. Here, we compiled databases that comprise both computationally- or experimentally-derived data, and categorized them based on quiddity and origin of data, further focusing on those that present high throughput omic data or drug screens. These databases were then contextualized with genome-wide screening methods such as CRISPR/Cas9 and RNA interference, as well as state of art systems biology approaches that enable systematic characterizations of multi-omic data to find new indications for approved drugs or those that reached the latest phases of clinical trials. Modern drug discovery through de novo drug discovery entails high financial costs, low success rates, and lengthy trial periods. Drug repositioning presents a suitable approach for overcoming these issues by re-evaluating biological targets and modes of action of approved drugs. Coupling high-throughput technologies with genome-wide essentiality screens, network analysis, genome-scale metabolic modeling, and machine learning techniques enables the proposal of new drug-target signatures and uncovers unanticipated modes of action for available drugs. Here, we discuss the current issues associated with drug repositioning in light of curated high-throughput multi-omic databases, genome-wide screening technologies, and their application in systems biology/medicine approaches.
  •  
4.
  • Altay, Özlem, et al. (författare)
  • Current Status of COVID-19 Therapies and Drug Repositioning Applications
  • 2020
  • Ingår i: Iscience. - : Elsevier BV. - 2589-0042. ; 23:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The rapid and global spread of a new human coronavirus (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of COVID-19. Drug repositioning is an attractive approach that can facilitate the drug discovery process by repurposing existing pharmaceuticals to treat illnesses other than their primary indications. Here, we review current information concerning the global health issue of COVID-19 including promising approved drugs and ongoing clinical trials for prospective treatment options. In addition, we describe computational approaches to be used in drug repurposing and highlight examples of in silico studies of drug development efforts against SARS-CoV-2.
  •  
5.
  • Izsak, Julia, et al. (författare)
  • Differential acute impact of therapeutically effective and overdose concentrations of lithium on human neuronal single cell and network function
  • 2021
  • Ingår i: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium salts are used as mood-balancing medication prescribed to patients suffering from neuropsychiatric disorders, such as bipolar disorder and major depressive disorder. Lithium salts cross the blood-brain barrier and reach the brain parenchyma within few hours after oral application, however, how lithium influences directly human neuronal function is unknown. We applied patch–clamp and microelectrode array technology on human induced pluripotent stem cell (iPSC)-derived cortical neurons acutely exposed to therapeutic (<1 mM) and overdose concentrations (>1 mM) of lithium chloride (LiCl) to assess how therapeutically effective and overdose concentrations of LiCl directly influence human neuronal electrophysiological function at the synapse, single-cell, and neuronal network level. We describe that human iPSC-cortical neurons exposed to lithium showed an increased neuronal activity under all tested concentrations. Furthermore, we reveal a lithium-induced, concentration-dependent, transition of regular synchronous neuronal network activity using therapeutically effective concentration (<1 mM LiCl) to epileptiform-like neuronal discharges using overdose concentration (>1 mM LiCl). The overdose concentration lithium-induced epileptiform-like activity was similar to the epileptiform-like activity caused by the GABAA-receptor antagonist. Patch–clamp recordings reveal that lithium reduces action potential threshold at all concentrations, however, only overdose concentration causes increased frequency of spontaneous AMPA-receptor mediated transmission. By applying the AMPA-receptor antagonist and anti-epileptic drug Perampanel, we demonstrate that Perampanel suppresses lithium-induced epileptiform-like activity in human cortical neurons. We provide insights in how therapeutically effective and overdose concentration of lithium directly influences human neuronal function at synapse, a single neuron, and neuronal network levels. Furthermore, we provide evidence that Perampanel suppresses pathological neuronal discharges caused by overdose concentrations of lithium in human neurons.
  •  
6.
  • Zhang, Cheng, et al. (författare)
  • Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositioning
  • 2022
  • Ingår i: eBioMedicine. - : Elsevier BV. - 2352-3964. ; 83
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Non-alcoholic fatty liver disease (NAFLD) encompasses a wide spectrum of liver pathologies. However, no medical treatment has been approved for the treatment of NAFLD. In our previous study, we found that PKLR could be a potential target for treatment of NALFD. Here, we investigated the effect of PKLR in in vivo model and performed drug repositioning to identify a drug candidate for treatment of NAFLD. Methods Tissue samples from liver, muscle, white adipose and heart were obtained from control and PKLR knock-out mice fed with chow and high sucrose diets. Lipidomics as well as transcriptomics analyses were conducted using these tissue samples. In addition, a computational drug repositioning analysis was performed and drug candidates were identified. The drug candidates were both tested in in vitro and in vivo models to evaluate their toxicity and efficacy. Findings The Pklr KO reversed the increased hepatic triglyceride level in mice fed with high sucrose diet and partly recovered the transcriptomic changes in the liver as well as in other three tissues. Both liver and white adipose tissues exhibited dysregulated circadian transcriptomic profiles, and these dysregulations were reversed by hepatic knockout of Pklr. In addition, 10 small molecule drug candidates were identified as potential inhibitor of PKLR using our drug repositioning pipeline, and two of them significantly inhibited both the PKLR expression and triglyceride level in in vitro model. Finally, the two selected small molecule drugs were evaluated in in vivo rat models and we found that these drugs attenuate the hepatic steatosis without side effect on other tissues. Interpretation In conclusion, our study provided biological insights about the critical role of PKLR in NAFLD progression and proposed a treatment strategy for NAFLD patients, which has been validated in preclinical studies. Copyright (C) 2022 The Authors. Published by Elsevier B.V.
  •  
7.
  • Zhang, C., et al. (författare)
  • The acute effect of metabolic cofactor supplementation: a potential therapeutic strategy against non-alcoholic fatty liver disease
  • 2020
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 16:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The prevalence of non-alcoholic fatty liver disease (NAFLD) continues to increase dramatically, and there is no approved medication for its treatment. Recently, we predicted the underlying molecular mechanisms involved in the progression of NAFLD using network analysis and identified metabolic cofactors that might be beneficial as supplements to decrease human liver fat. Here, we first assessed the tolerability of the combined metabolic cofactors including l-serine, N-acetyl-l-cysteine (NAC), nicotinamide riboside (NR), and l-carnitine by performing a 7-day rat toxicology study. Second, we performed a human calibration study by supplementing combined metabolic cofactors and a control study to study the kinetics of these metabolites in the plasma of healthy subjects with and without supplementation. We measured clinical parameters and observed no immediate side effects. Next, we generated plasma metabolomics and inflammatory protein markers data to reveal the acute changes associated with the supplementation of the metabolic cofactors. We also integrated metabolomics data using personalized genome-scale metabolic modeling and observed that such supplementation significantly affects the global human lipid, amino acid, and antioxidant metabolism. Finally, we predicted blood concentrations of these compounds during daily long-term supplementation by generating an ordinary differential equation model and liver concentrations of serine by generating a pharmacokinetic model and finally adjusted the doses of individual metabolic cofactors for future human clinical trials.
  •  
8.
  • Yau, Estelle, et al. (författare)
  • Global Sensitivity Analysis of the Rodgers and Rowland Model for Prediction of Tissue: Plasma Partitioning Coefficients: Assessment of the Key Physiological and Physicochemical Factors That Determine Small-Molecule Tissue Distribution
  • 2020
  • Ingår i: AAPS Journal. - : Springer Nature. - 1550-7416. ; 22:2, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • In physiologically based pharmacokinetic (PBPK) modelling, the large number of input parameters, limited amount of available data and the structural model complexity generally hinder simultaneous estimation of uncertain and/or unknown parameters. These parameters are generally subject to estimation. However, the approaches taken for parameter estimation vary widely. Global sensitivity analyses are proposed as a method to systematically determine the most influential parameters that can be subject to estimation. Herein, a global sensitivity analysis was conducted to identify the key drug and physiological parameters influencing drug disposition in PBPK models and to potentially reduce the PBPK model dimensionality. The impact of these parameters was evaluated on the tissue-to-unbound plasma partition coefficients (Kpus) predicted by the Rodgers and Rowland model using Latin hypercube sampling combined to partial rank correlation coefficients (PRCC). For most drug classes, PRCC showed that LogP and fraction unbound in plasma (fup) were generally the most influential parameters for Kpu predictions. For strong bases, blood:plasma partitioning was one of the most influential parameter. Uncertainty in tissue composition parameters had a large impact on Kpu and Vss predictions for all classes. Among tissue composition parameters, changes in Kpu outputs were especially attributed to changes in tissue acidic phospholipid concentrations and extracellular protein tissue:plasma ratio values. In conclusion, this work demonstrates that for parameter estimation involving PBPK models and dimensionality reduction purposes, less influential parameters might be assigned fixed values depending on the parameter space, while influential parameters could be subject to parameters estimation.
  •  
9.
  • Mitra, Sanhita, et al. (författare)
  • Subcellular distribution of p53 by the p53-responsive lncRNA NBAT1 determines chemotherapeutic response in neuroblastoma.
  • 2021
  • Ingår i: Cancer research. - 1538-7445. ; 81:6, s. 1457-1471
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroblastoma has a low mutation rate for the p53 gene. Alternative ways of p53 inactivation have been proposed in neuroblastoma, such as abnormal cytoplasmic accumulation of wild-type p53. However, mechanisms leading to p53 inactivation via cytoplasmic accumulation are not well investigated. Here we show that the neuroblastoma risk-associated locus 6p22.3-derived tumor suppressor NBAT1 is a p53-responsive lncRNA that regulates p53 subcellular levels. Low expression of NBAT1 provided resistance to genotoxic drugs by promoting p53 accumulation in cytoplasm and loss from mitochondrial and nuclear compartments. Depletion of NBAT1 altered CRM1 function and contributed to the loss of p53-dependent nuclear gene expression during genotoxic drug treatment. CRM1 inhibition rescued p53-dependent nuclear functions and sensitized NBAT1-depleted cells to genotoxic drugs. Combined inhibition of CRM1 and MDM2 was even more effective in sensitizing aggressive neuroblastoma cells with p53 cytoplasmic accumulation. Thus, our mechanistic studies uncover an NBAT1-dependent CRM1/MDM2-based potential combination therapy for high-risk neuroblastoma patients.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 797
Typ av publikation
tidskriftsartikel (654)
forskningsöversikt (72)
doktorsavhandling (44)
bokkapitel (14)
konferensbidrag (8)
samlingsverk (redaktörskap) (1)
visa fler...
rapport (1)
annan publikation (1)
licentiatavhandling (1)
patent (1)
visa färre...
Typ av innehåll
refereegranskat (710)
övrigt vetenskapligt/konstnärligt (83)
populärvet., debatt m.m. (3)
Författare/redaktör
Svensson, Elin, 1985 ... (29)
Bergström, Christel, ... (29)
Lennernäs, Hans (24)
Artursson, Per (23)
Nielsen, Jens B, 196 ... (21)
Simonsson, Ulrika S. ... (18)
visa fler...
Karlsson, Mats (17)
Bergström, Christel ... (17)
Karlsson, Mats O. (13)
Larsson, Per (13)
Diacon, Andreas H. (12)
Sjögren, Erik, 1977- (12)
Friberg, Lena E (12)
Uhlén, Mathias (11)
Frenning, Göran (11)
Teleki, Alexandra (10)
Malmsten, Martin (10)
Kjellsson, Maria C., ... (10)
Mardinoglu, Adil (9)
Borén, Jan, 1963 (9)
Jirstrand, Mats, 196 ... (9)
Turkez, Hasan (8)
Abrahamsson, Bertil (8)
Schiöth, Helgi B. (8)
Green, Henrik (8)
Dorlo, Thomas P C (8)
Nandakumar, Kutty Se ... (8)
Berg, Staffan (8)
Hedeland, Mikael (8)
Denti, Paolo (7)
Erdelyi, Mate, 1975 (7)
Abulfathi, Ahmed A. (7)
Hammarlund-Udenaes, ... (7)
Hansson, Per (6)
Zhang, Cheng (6)
Sunnerhagen, Per, 19 ... (6)
Darwich, Adam S. (6)
Tolmachev, Vladimir (6)
Abrahmsén-Alami, Sus ... (6)
Larsson, Anette, 196 ... (6)
Nielsen, Elisabet I. ... (6)
Svensson, Elin M., 1 ... (6)
Alderborn, Göran (6)
Mardinoglu, Adil, 19 ... (6)
Li, Xiangyu (6)
Kim, Woonghee (6)
Turkez, H. (6)
Spjuth, Ola, Profess ... (6)
Paulsson, Mattias (6)
Löbmann, Korbinian (6)
visa färre...
Lärosäte
Uppsala universitet (457)
Chalmers tekniska högskola (99)
Göteborgs universitet (83)
Lunds universitet (74)
Kungliga Tekniska Högskolan (64)
Karolinska Institutet (57)
visa fler...
Linköpings universitet (48)
Stockholms universitet (26)
Umeå universitet (24)
Malmö universitet (16)
Sveriges Lantbruksuniversitet (15)
RISE (10)
Högskolan i Halmstad (9)
Örebro universitet (8)
Luleå tekniska universitet (7)
Linnéuniversitetet (4)
Högskolan i Skövde (3)
Högskolan Dalarna (2)
Högskolan i Borås (1)
Marie Cederschiöld högskola (1)
visa färre...
Språk
Engelska (794)
Svenska (2)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (797)
Naturvetenskap (141)
Teknik (38)
Lantbruksvetenskap (7)
Samhällsvetenskap (6)
Humaniora (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy