SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(NATURAL SCIENCES Chemistry Environmental chemistry) srt2:(2020-2025)"

Sökning: AMNE:(NATURAL SCIENCES Chemistry Environmental chemistry) > (2020-2025)

  • Resultat 1-10 av 559
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wu, R. R., et al. (författare)
  • Molecular composition and volatility of multi-generation products formed from isoprene oxidation by nitrate radical
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:13, s. 10799-10824
  • Tidskriftsartikel (refereegranskat)abstract
    • Isoprene oxidation by nitrate radical (NO3) is a potentially important source of secondary organic aerosol (SOA). It is suggested that the second or later-generation products are the more substantial contributors to SOA. However, there are few studies investigating the multi-generation chemistry of isoprene-NO3 reaction, and information about the volatility of different isoprene nitrates, which is essential to evaluate their potential to form SOA and determine their atmospheric fate, is rare. In this work, we studied the reaction between isoprene and NO3 in the SAPHIR chamber (Julich) under near-atmospheric conditions. Various oxidation products were measured by a high-resolution time-offlight chemical ionization mass spectrometer using Br as the reagent ion. Most of the products detected are organic nitrates, and they are grouped into monomers (C-4 and C-5 products) and dimers (C-10 products) with 1-3 nitrate groups according to their chemical composition. Most of the observed products match expected termination products observed in previous studies, but some compounds such as monomers and dimers with three nitrogen atoms were rarely reported in the literature as gas-phase products from isoprene oxidation by NO3. Possible formation mechanisms for these compounds are proposed. The multi-generation chemistry of isoprene and NO3 is characterized by taking advantage of the time behavior of different products. In addition, the vapor pressures of diverse isoprene nitrates are calculated by different parametrization methods. An estimation of the vapor pressure is also derived from their condensation behavior. According to our results, isoprene monomers belong to intermediate-volatility or semi-volatile organic compounds and thus have little effect on SOA formation. In contrast, the dimers are expected to have low or extremely low volatility, indicating that they are potentially substantial contributors to SOA. However, the monomers constitute 80% of the total explained signals on average, while the dimers contribute less than 2 %, suggesting that the contribution of isoprene NO3 oxidation to SOA by condensation should be low under atmospheric conditions. We expect a SOA mass yield of about 5% from the wall-loss- and dilution-corrected mass concentrations, assuming that all of the isoprene dimers in the low- or extremely low-volatility organic compound (LVOC or ELVOC) range will condense completely.
  •  
2.
  •  
3.
  • Guo, Y. D., et al. (författare)
  • Identification of highly oxygenated organic molecules and their role in aerosol formation in the reaction of limonene with nitrate radical
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:17, s. 11323-11346
  • Tidskriftsartikel (refereegranskat)abstract
    • Nighttime NO3-initiated oxidation of biogenic volatile organic compounds (BVOCs) such as monoterpenes is important for the atmospheric formation and growth of secondary organic aerosol (SOA), which has significant impact on climate, air quality, and human health. In such SOA formation and growth, highly oxygenated organic molecules (HOM) may be crucial, but their formation pathways and role in aerosol formation have yet to be clarified. Among monoterpenes, limonene is of particular interest for its high emission globally and high SOA yield. In this work, HOM formation in the reaction of limonene with nitrate radical (NO3) was investigated in the SAPHIR chamber (Simulation of Atmospheric PHotochemistry In a large Reaction chamber). About 280 HOM products were identified, grouped into 19 monomer families, 11 dimer families, and 3 trimer families. Both closed-shell products and open-shell peroxy radicals (RO2 center dot) 2 were observed, and many of them have not been reported previously. Monomers and dimers accounted for 47% and 47% of HOM concentrations, respectively, with trimers making up the remaining 6 %. In the most abundant monomer families, C10H15-17NO6-14, carbonyl products outnumbered hydroxyl products, indicating the importance of RO2 center dot termination by unimolecular dissociation. Both RO2 center dot autoxidation and alkoxy-peroxy pathways were found to be important processes leading to HOM. Time-dependent concentration profiles of monomer products containing nitrogen showed mainly second-generation formation patterns. Dimers were likely formed via the accretion reaction of two monomer RO2 center dot , and HOM-trimers via the accretion reaction between monomer RO2 center dot and dimer RO2 center dot. Trimers are suggested to play an important role in new particle formation (NPF) observed in our experiment. A HOM yield of 1.5%(+1.7%)(-0.7%) was estimated considering only first-generation products. SOA mass growth could be reasonably explained by HOM condensation on particles assuming irreversible uptake of ultra-low volatility organic compounds (ULVOCs), extremely low volatility organic compounds (ELVOCs), and low volatility organic compounds (LVOCs). This work provides evidence for the important role of HOM formed via the limonene +NO3 reaction in NPF and growth of SOA particles.
  •  
4.
  • Voliotis, A., et al. (författare)
  • Chamber investigation of the formation and transformation of secondary organic aerosol in mixtures of biogenic and anthropogenic volatile organic compounds
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:21, s. 14147-14175
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive chamber investigation of photochemical secondary organic aerosol (SOA) formation and transformation in mixtures of anthropogenic (o-cresol) and biogenic (alpha-pinene and isoprene) volatile organic compound (VOC) precursors in the presence of NOx and inorganic seed particles was conducted. To enable direct comparison across systems, the initial concentration (hence reactivity) of the systems towards the dominant OH oxidant was adjusted. Comparing experiments conducted in single-precursor systems at various initial reactivity levels (referenced to a nominal base case VOC concentration, e.g. halving the initial concentration for a 1/2 initial reactivity experiment) as well as their binary and ternary mixtures, we show that the molecular interactions from the mixing of the precursors can be investigated and discuss challenges in their interpretation. The observed average SOA particle mass yields (the organic particle mass produced for a mass of VOC consumed) in descending order were found for the following systems: alpha-pinene (32 +/- 7 %), alpha-pinene-o-cresol (28 +/- 9 %), alpha-pinene at 1/2 initial reactivity (21 +/- 5 %), alpha-pinene-isoprene (16 +/- 1 %), alpha-pinene at 1/3 initial reactivity (15 +/- 4 %), o-cresol (13 +/- 3 %), alpha-pinene-o-cresol-isoprene (11 +/- 4 %), o-cresol at 1/2 initial reactivity (11 +/- 3 %), o-cresol-isoprene (6 +/- 2 %), and isoprene (0 +/- 0 %). We find a clear suppression of the SOA mass yield from alpha-pinene when it is mixed with isoprene, whilst no suppression or enhancement of SOA particle yield from o-cresol was found when it was similarly mixed with isoprene. The alpha-pinene-o-cresol system yield appeared to be increased compared to that calculated based on the additivity, whilst in the alpha-pinene-o-cresol-isoprene system the measured and predicted yields were comparable. However, in mixtures in which more than one precursor contributes to the SOA particle mass it is unclear whether changes in the SOA formation potential are attributable to physical or chemical interactions, since the reference basis for the comparison is complex. Online and offline chemical composition as well as SOA particle volatility, water uptake, and "phase" behaviour measurements that were used to interpret the SOA formation and behaviour are introduced and detailed elsewhere.
  •  
5.
  • Brownwood, B., et al. (författare)
  • Gas-Particle Partitioning and SOA Yields of Organonitrate Products from NO3-Initiated Oxidation of Isoprene under Varied Chemical Regimes
  • 2021
  • Ingår i: Acs Earth and Space Chemistry. - : American Chemical Society (ACS). - 2472-3452. ; 5:4, s. 785-800
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkyl nitrate (AN) and secondary organic aerosol (SOA) from the reaction of nitrate radicals (NO3) with isoprene were observed in the Simulation of Atmospheric PHotochemistry In a large Reaction (SAPHIR) chamber during the NO(3)Isop campaign in August 2018. Based on 15 day-long experiments under various reaction conditions, we conclude that the reaction has a nominally unity molar AN yield (observed range 90 +/- 40%) and an SOA mass yield of OA + organic nitrate aerosol of 13-15% (with similar to 50 mu g m(-3) inorganic seed aerosol and 2-5 mu g m-3 total organic aerosol). Isoprene (5-25 ppb) and oxidant (typically similar to 100 ppb O-3 and 5-25 ppb NO2) concentrations and aerosol composition (inorganic and organic coating) were varied while remaining close to ambient conditions, producing similar AN and SOA yields under all regimes. We observe the formation of dinitrates upon oxidation of the second double bond only once the isoprene precursor is fully consumed. We determine the bulk partitioning coefficient for ANs (K-p similar to 10(-3) m(3) mu g(-1)), indicating an average volatility corresponding to a C-5 hydroxy hydroperoxy nitrate.
  •  
6.
  • Meng, X. X. Y., et al. (författare)
  • Humidity-Dependent Phase State of Gasoline Vehicle Emission-Related Aerosols
  • 2021
  • Ingår i: Environmental Science & Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 55:2, s. 832-841
  • Tidskriftsartikel (refereegranskat)abstract
    • The phase states of primarily emitted and secondarily formed aerosols from gasoline vehicle exhausts were investigated by quantifying the particle rebound fraction (f). The rebound behaviors of gasoline vehicle emission-related aerosols varied with engines, fuel types, and photochemical aging time, showing distinguished differences from biogenic secondary organic aerosols. The nonliquid-to-liquid phase transition of primary aerosols emitted from port fuel injection (PFI) and gasoline direct injection (GDI) vehicles started at a relative humidity (RH) = 50 and 60%, and liquefaction was accomplished at 60 and 70%, respectively. The RH at which f declined to 0.5 decreased from 70 to 65% for the PFI case with 92# fuel, corresponding to the photochemical aging time from 0.37 to 4.62 days. For the GDI case, such RH enhanced from 60 to 65%. Our results can be used to imply the phase state of traffic-related aerosols and further understand their roles in urban atmospheric chemistry. Taking Beijing, China, as an example, traffic-related aerosols were mainly nonliquid during winter with the majority ambient RH below 50%, whereas they were mostly liquid during the morning rush hour of summer, and traffic-related secondary aerosols fluctuated between nonliquid and liquid during the daytime and tended to be liquid at night with increased ambient RH.
  •  
7.
  • Salvador, Christian Mark, 1989, et al. (författare)
  • Ambient nitro-aromatic compounds - biomass burning versus secondary formation in rural China
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:3, s. 1389-1406
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitro-aromatic compounds (NACs) were measured hourly at a rural site in China during wintertime to monitor the changes due to local and regional impacts of biomass burning (BB). Concurrent and continuous measurements of the concentrations of 16 NACs in the gas and particle phases were performed with a time-of-flight chemical ionization mass spectrometer (CIMS) equipped with a Filter Inlet for Gases and AEROsols (FIGAERO) unit using iodide as the reagent ion. NACs accounted for <2 % of the mass concentration of organic matter (OM) and total particulate matter (PM), but the total particle mass concentrations of these compounds can reach as high as 1000 ng m(-3) (299 ng m(-3) avg), suggesting that they may contribute significantly to the radiative forcing effects of atmospheric particles. Levels of gas-phase NACs were highest during the daytime (15:00-16:00 local time, LT), with a smaller night-time peak around 20:00LT. Box-model simulations showed that this occurred because the rate of NAC production from gas-phase sources exceeded the rate of loss, which occurred mainly via the OH reaction and to a lesser degree via photolysis. Data gathered during extended periods with high contributions from primary BB sources (resulting in 40 %-60 % increases in NAC concentrations) were used to characterize individual NACs with respect to gas-particle partitioning and the contributions of regional secondary processes (i.e. photochemical smog). On days without extensive BB, secondary formation was the dominant source of NACs, and NAC levels correlated strongly with the ambient ozone concentration. Analyses of individual NACs in the regionally aged plumes sampled on these days allowed precursors such as phenol and catechol to be linked to their NAC derivatives (i.e. nitrophenol and nitrocatechol). Correlation analysis using the high time resolution data and box-model simulation results constrained the relationships between these compounds and demonstrated the contribution of secondary formation processes. Furthermore, 13 of 16 NACS were classified according to primary or secondary formation process. Primary emission was the dominant source (accounting for 60 %-70 % of the measured concentrations) of 5 of the 16 studied NACs, but secondary formation was also a significant source. Photochemical smog thus has important effects on brown carbon levels even during wintertime periods dominated by primary air pollution in rural China.
  •  
8.
  • Li, J., et al. (författare)
  • Hygroscopicity of Fresh and Aged Salt Mixtures from Saline Lakes
  • 2021
  • Ingår i: Atmosphere. - : MDPI AG. - 2073-4433. ; 12:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The high hygroscopicity of salt aerosol particles makes the particles active in aerosol and cloud formations. Inland saline lakes are an important and dynamic source of salt aerosol. The salt particles can be mixed with mineral dust and transported over long distances. During transportation, these particles participate in atmospheric heterogeneous chemistry and further impact the climate and air quality on a global scale. Despite their importance and potential, relatively little research has been done on saline lake salt mixtures from atmospheric perspectives. In this study, we use experimental and model methods to evaluate the hygroscopic properties of saline lake brines, fresh salt aerosol particles, and aged salt aerosol particles. Both original samples and literature data are investigated. The original brine samples are collected from six salt lakes in Shanxi and Qinghai provinces in China. The ionic compositions of the brines are determined and the hygroscopicity measurements are performed on crystallized brines. The experimental results agree well with theoretical deliquescence relative humidity (DRH) values estimated by a thermodynamic model. The correlations between DRHs of different salt components and the correlations between DRHs and ionic concentrations are presented and discussed. Positive matrix factorization (PMF) analysis is performed on the ionic concentrations data and the hygroscopicity results, and the solutions are interpreted and discussed. The fresh and aged salt aerosol particles are analyzed in the same way as the brines, and the comparison shows that the aged salt aerosol particles completely alter their hygroscopic property, i.e., transferring from MgCl2- governed to NH4NO3- governed.
  •  
9.
  •  
10.
  • Rämö, Robert, et al. (författare)
  • Sediment Remediation Using Activated Carbon: Effects of Sorbent Particle Size and Resuspension on Sequestration of Metals and Organic Contaminants.
  • 2022
  • Ingår i: Environmental toxicology and chemistry. - : Wiley. - 1552-8618 .- 0730-7268. ; 41:4, s. 1096-1110
  • Tidskriftsartikel (refereegranskat)abstract
    • Thin-layer capping using activated carbon (AC) has been described as a cost-effective in situ sediment remediation method for organic contaminants. In this study, we compare the capping efficiency of powdered AC (PAC) against granular AC (GAC) using contaminated sediment from Oskarshamn harbor, Sweden. The effects of resuspension on contaminant retention and cap integrity were also studied. Intact sediment cores were collected from the outer harbor and brought to the laboratory. Three thin-layer caps, consisting of PAC or GAC mixed with clay, or clay only, were added to the sediment surface. Resuspension was created using a motor-driven paddle to simulate propeller wash from ship traffic. Passive samplers were placed in the sediment and in the water column to measure the sediment-to-water release of PAHs, PCBs, and metals. Our results show that a thin-layer cap with PAC reduced sediment-to-water fluxes of PCBs by 57 % under static conditions and 91 % under resuspension. Thin-layer capping with GAC was less effective than PAC, but reduced fluxes of high-molecular weight PAHs. Thin-layer capping with AC was less effective in retaining metals, except for Cd, which release was significantly reduced by PAC. Resuspension generally decreased water concentrations of dissolved cationic metals, perhaps due to sorption to suspended sediment particles. Sediment resuspension in treatments without capping increased fluxes of PCBs with log Kow > 7 and PAHs with log Kow 5 6, but resuspension reduced PCB and PAH fluxes through the PAC thin-layer cap. Overall, PAC performed better than GAC, but adverse effects on the benthic community and transport of PAC to non-target areas are drawbacks that favor the use of GAC. This article is protected by copyright. All rights reserved.© 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 559
Typ av publikation
tidskriftsartikel (436)
doktorsavhandling (37)
forskningsöversikt (29)
rapport (21)
konferensbidrag (13)
bokkapitel (11)
visa fler...
licentiatavhandling (7)
annan publikation (3)
samlingsverk (redaktörskap) (1)
proceedings (redaktörskap) (1)
visa färre...
Typ av innehåll
refereegranskat (478)
övrigt vetenskapligt/konstnärligt (77)
populärvet., debatt m.m. (4)
Författare/redaktör
Hallquist, Mattias, ... (21)
Jannasch, Patric (13)
Kong, Xiangrui (13)
Ahrens, Lutz (8)
Pettersson, Jan B. C ... (8)
Li, Jun (7)
visa fler...
Priestley, Michael (7)
Simões dos Reis, Gla ... (7)
Moth-Poulsen, Kasper ... (6)
Zack, Thomas, 1968 (6)
Tsiligiannis, Epamei ... (6)
Salvador, Christian ... (6)
Jansson, Stina (5)
Boman, Johan, 1955 (5)
Arvidsson, Rickard, ... (5)
Tang, Luping, 1956 (5)
Gallego-Urrea, Julia ... (5)
Pan, Dong (5)
Mentel, T. F. (5)
Tillmann, R. (5)
Kiendler-Scharr, A. (5)
Fuchs, H. (5)
Liu, Wanyu (5)
Wang, Sen (5)
Nygren, Ingrid (5)
Mattsson, Tobias (5)
Wang, Y. (4)
Fick, Jerker (4)
Hu, M. (4)
Johansson, Patrik, 1 ... (4)
Björn, Erik (4)
Larsson, Sylvia (4)
Ekberg, Christian, 1 ... (4)
Yeung, Leo W. Y., 19 ... (4)
Åström, Mats E., 196 ... (4)
Palermo, Vincenzo, 1 ... (4)
Novelli, A (4)
Thomson, Erik S (4)
Burchardt, Steffi, 1 ... (4)
Guo, S, (4)
Grimm, Alejandro (4)
Ketzer, João Marcelo (4)
Brownwood, B. (4)
Carlsson, P. T. M. (4)
Brown, S. S. (4)
Fry, J. L. (4)
Vereecken, L. (4)
Li, Linjie (4)
Hölzel, Helen, 1991 (4)
Hanson, Marsha, 1963 ... (4)
visa färre...
Lärosäte
Chalmers tekniska högskola (131)
Göteborgs universitet (89)
Stockholms universitet (69)
Umeå universitet (62)
Lunds universitet (62)
Uppsala universitet (60)
visa fler...
Sveriges Lantbruksuniversitet (59)
Kungliga Tekniska Högskolan (49)
RISE (25)
Örebro universitet (23)
Linnéuniversitetet (23)
Luleå tekniska universitet (21)
Naturhistoriska riksmuseet (16)
IVL Svenska Miljöinstitutet (14)
Linköpings universitet (12)
Karolinska Institutet (6)
Karlstads universitet (4)
Mälardalens universitet (3)
Högskolan Kristianstad (2)
Högskolan i Gävle (2)
Naturvårdsverket (2)
Högskolan i Borås (2)
VTI - Statens väg- och transportforskningsinstitut (2)
Mittuniversitetet (1)
Havs- och vattenmyndigheten (1)
visa färre...
Språk
Engelska (538)
Svenska (19)
Portugisiska (1)
Kinesiska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (559)
Teknik (188)
Medicin och hälsovetenskap (22)
Lantbruksvetenskap (20)
Samhällsvetenskap (9)
Humaniora (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy