SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(NATURVETENSKAP Kemi Organisk kemi) srt2:(2020-2024)"

Sökning: AMNE:(NATURVETENSKAP Kemi Organisk kemi) > (2020-2024)

  • Resultat 1-10 av 1196
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Maurina Morais, Eduardo, 1989, et al. (författare)
  • Solvent-free synthesis of protic ionic liquids. Synthesis, characterization and computational studies of triazolium based ionic liquids
  • 2022
  • Ingår i: Journal of Molecular Liquids. - : Elsevier BV. - 0167-7322. ; 360
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of triazolium and imidazolium based protic ionic liquids were synthesized using a solvent-free method designed to address several limitations encountered with other commonly used methods. Using this method, pure (98–99% m/m) and dry (128–553 ppm of water) protic ionic liquids were synthesized (in a laboratory scale) without the need for purification methods that require heating the ionic liquid, hence avoiding the common issue of thermal decomposition. This method was also designed to allow for the accurate measurement of acid and base, and for the controlled mixing of both compounds, which is essential to avoid producing impure protic ionic liquids with excess of either acid or base. The system is constructed of only glass and chemically resistant polymer (PTFE and PVDF) parts, which avoid other contaminants that can result from unwanted reactions involving the reagents with common laboratory tools (metallic objects, paper, plastic, etc.). This process is described in detail in the paper as well as in a video. The resulting ionic liquids were carefully analyzed by spectroscopic and thermal methods designed to avoid water absorption, which is known to affect their properties. To complement this experimental characterization, computational chemistry tools were used to assess the ionic liquids’ properties, as well as to assign vibrational modes.
  •  
2.
  • Maurina Morais, Eduardo, 1989 (författare)
  • Synthesis of protic ionic liquids. Challenges and solutions for the synthesis of pure compounds.
  • 2022
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The urgent need to diversify our energy matrix is responsible for a renewed interest in fuel cell technology, which can use hydrogen gas, a renewable green fuel, as an energy source. This technology is currently a commercially available option, however, it still requires technological improvements before it can be widely used for different applications. One way this technology could potentially be improved is by increasing its temperature range of operation by developing new, anhydrous proton conducting materials. Protic ionic liquids, which are organic salts with low melting temperatures, are interesting candidates for this application, since they can conduct protons in the operational conditions of fuel cells and without the need of water. These compounds can be synthesized by a simple acid-base neutralization reaction, but certain considerations must be taken in order to obtain high quality (dry and pure) protic ionic liquids. In this thesis, a series of triazolium and imidazolium based protic ionic liquids were synthesized using a solvent-free method designed to address several limitations encountered with other commonly used methods. Using this method, pure (98-99% m/m) and dry (128-553 ppm of water) protic ionic liquids were synthesized (in a laboratory scale) without the need for purification methods that require heating the ionic liquid, hence avoiding the common issue of thermal decomposition. This method was also designed to allow for the accurate measurement of acid and base, and for the controlled mixing of both compounds, which is essential to avoid producing impure protic ionic liquids with excess of either acid or base. The system is consists of only glass and chemically resistant polymer(PTFE and PVDF) parts, which avoids other contaminants that can result from unwanted reactions involving the reagents with common laboratory tools (metallic objects, paper, plastic, etc.). The resulting ionic liquids were carefully analyzed by spectroscopic and thermal analysis methods designed to avoid water absorption, which is known to affect their properties. To complement this experimental characterization, computational chemistry tools were used to assess the ionic liquids’ properties, as well as to assign vibrational modes.
  •  
3.
  • Sauer, Christopher, 1993 (författare)
  • Green Aromatics: Catalytic Valorisation of bio-derived 2,5-dimethylfuran over Zeolites and Zeotypes
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis discusses the use of biomass as a potentially green feedstock for the chemical industry in the urgent shift away from fossil resources. I elaborate on reasons why we cannot afford to burn virgin biomass for energy production, among them a variety of ecosystem services that forests and other lands provide. In addition, the utilisation of biomass should be focused on products that sequester and lock away carbon for more extended periods, e.g. timber, materials and chemicals. In particular, biomass can be used as an alternative "carbon neutral" feedstock for the chemical industry, where we can preserve the already existing chemical complexity in the bio-based molecules. One example is the upgrading of furans to benzene, toluene and xylene (BTX) aromatics with the help of zeolite catalysis. These aromatics are important commodity chemicals, where the shift to a bio-based resource could make use of already existing knowledge, catalyst and production infrastructure. However, research is necessary to understand these new feedstock molecules and their interaction with the catalysts and to enable the design of applicable catalysts. In order to study the interaction of the furans, in particular 2,5-dimethylfuran (2,5-dmf), I describe and discuss the development of an analytical methodology that utilises infrared spectroscopy and mass spectrometry for the on-line identification and quantification of product molecules during catalytic reactions. This on-line analysis method is then applied to the catalytic conversion of 2,5-dmf to aromatics over a range of zeolite and zeotype catalysts. In-depth studies with ammonia as a probe molecule of the catalytic active acid sites, as well as temperature programmed experiments with ammonia and 2,5-dmf give insights into product distribution, selectivity changes and deactivation of the catalyst. For example, olefins and aromatics are initially preferred products, while with increasing time on stream, the isomerisation of 2,5-dmf becomes dominant. The incorporation of Ga into the zeotype framework, resulting in a Ga-Silicate, shows how targeted catalyst design can increase overall aromatics production. This catalyst is also suitable for selective isomerisation of 2,5-dmf to 2,4-dimethylfuran, which has a rare substitution pattern. Finally, itwas found that the most valuable of BTX,  p -xylene, can be produced more selectively when 2,5-dmf is pre-adsorbed onto zeolite ZSM-5 and then released during a temperature programmed product desorption.
  •  
4.
  • Damas, Giane Benvinda, et al. (författare)
  • Carbon dioxide reduction mechanism on Ru-based electrocatalysts [Ru(bpy)(2)(CO)(2)](2+) : insights from first-principles theory
  • 2021
  • Ingår i: Sustainable Energy & Fuels. - : Royal Society of Chemistry. - 2398-4902. ; 5:23, s. 6066-6076
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar fuel production through the so-called artificial photosynthesis has attracted a great deal of attention to the development of a new world energy matrix that is renewable and environmentally friendly. This process is characterized by light absorption with enough photon energy to generate conduction electrons, which drive the carbon dioxide reduction to produce organic fuels. It is also common to couple Ru-complex electrocatalysts to form a more efficient and selective hybrid system for this application. In this work, we have undertaken a thorough investigation of the redox reaction mechanism of Ru-based electrocatalysts by means of density functional theory (DFT) methods under the experimental conditions that have been previously reported. More specifically, we have studied the electrochemistry and catalytic activity of the [Ru(bpy)(2)(CO)(2)](2+) coordination complex. Our theoretical assessment supports the following catalytic cycle: (i) [Ru(bpy)(2)(CO)(2)](2+) is transformed into [Ru(bpy)(2)(CO)](0) upon two-electron reduction and CO release; (ii) [Ru(bpy)(2)(CO)](0) is protonated to form the [Ru(bpy)(2)(CO)H](+) hydride complex; (iii) CO2 is activated by the hydride complex through an electrophilic addition to form the [Ru(bpy)(2)(CO)(OCHO)](+) intermediate; (iv) the resulting formic acid ligand is released in solution; and, finally, (v) the CO ligand is reattached to the complex to recover the initial [Ru(bpy)(2)(CO)(2)](2+) catalyst.
  •  
5.
  • Guo, Y. D., et al. (författare)
  • Identification of highly oxygenated organic molecules and their role in aerosol formation in the reaction of limonene with nitrate radical
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:17, s. 11323-11346
  • Tidskriftsartikel (refereegranskat)abstract
    • Nighttime NO3-initiated oxidation of biogenic volatile organic compounds (BVOCs) such as monoterpenes is important for the atmospheric formation and growth of secondary organic aerosol (SOA), which has significant impact on climate, air quality, and human health. In such SOA formation and growth, highly oxygenated organic molecules (HOM) may be crucial, but their formation pathways and role in aerosol formation have yet to be clarified. Among monoterpenes, limonene is of particular interest for its high emission globally and high SOA yield. In this work, HOM formation in the reaction of limonene with nitrate radical (NO3) was investigated in the SAPHIR chamber (Simulation of Atmospheric PHotochemistry In a large Reaction chamber). About 280 HOM products were identified, grouped into 19 monomer families, 11 dimer families, and 3 trimer families. Both closed-shell products and open-shell peroxy radicals (RO2 center dot) 2 were observed, and many of them have not been reported previously. Monomers and dimers accounted for 47% and 47% of HOM concentrations, respectively, with trimers making up the remaining 6 %. In the most abundant monomer families, C10H15-17NO6-14, carbonyl products outnumbered hydroxyl products, indicating the importance of RO2 center dot termination by unimolecular dissociation. Both RO2 center dot autoxidation and alkoxy-peroxy pathways were found to be important processes leading to HOM. Time-dependent concentration profiles of monomer products containing nitrogen showed mainly second-generation formation patterns. Dimers were likely formed via the accretion reaction of two monomer RO2 center dot , and HOM-trimers via the accretion reaction between monomer RO2 center dot and dimer RO2 center dot. Trimers are suggested to play an important role in new particle formation (NPF) observed in our experiment. A HOM yield of 1.5%(+1.7%)(-0.7%) was estimated considering only first-generation products. SOA mass growth could be reasonably explained by HOM condensation on particles assuming irreversible uptake of ultra-low volatility organic compounds (ULVOCs), extremely low volatility organic compounds (ELVOCs), and low volatility organic compounds (LVOCs). This work provides evidence for the important role of HOM formed via the limonene +NO3 reaction in NPF and growth of SOA particles.
  •  
6.
  • Guo, Y., et al. (författare)
  • Reversible Structural Isomerization of Nature's Water Oxidation Catalyst Prior to O-O Bond Formation
  • 2022
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 144:26, s. 11736-11747
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosynthetic water oxidation is catalyzed by a manganese-calcium oxide cluster, which experiences five "S-states" during a light-driven reaction cycle. The unique "distorted chair"-like geometry of the Mn4CaO5(6)cluster shows structural flexibility that has been frequently proposed to involve "open" and "closed"-cubane forms from the S1 to S3states. The isomers are interconvertible in the S1 and S2states, while in the S3state, the open-cubane structure is observed to dominate inThermosynechococcus elongatus (cyanobacteria) samples. In this work, using density functional theory calculations, we go beyond the S3+Yzstate to the S3nYz•→ S4+Yzstep, and report for the first time that the reversible isomerism, which is suppressed in the S3+Yzstate, is fully recovered in the ensuing S3nYz•state due to the proton release from a manganese-bound water ligand. The altered coordination strength of the manganese-ligand facilitates formation of the closed-cubane form, in a dynamic equilibrium with the open-cubane form. This tautomerism immediately preceding dioxygen formation may constitute the rate limiting step for O2formation, and exert a significant influence on the water oxidation mechanism in photosystem II. 
  •  
7.
  •  
8.
  • Artemenko, A., et al. (författare)
  • Reference XPS spectra of amino acids
  • 2021
  • Konferensbidrag (refereegranskat)abstract
    • In this report we present XPS data for five amino acids (AAs) (tryptophan, methionine, glutamine, glutamic acid, and arginine) with different side chain groups measured in solid state (powder form). The theoretically and experimentally obtained chemical structure of AAs are compared. Here, we analyse and discuss C 1 s, N 1 s, O 1s and S 2p core level binding energies, FWHMs, atomic concentrations of the functional groups in AAs. The experimentally obtained and theoretically calculated ratio of atomic concentrations are compared. The zwitterionic nature of methionine and glutamine in solid state was determined from protonated amino groups in N 1s peak and deprotonated carboxylic groups in the C 1s spectrum. The obtained XPS results for AAs well correspond with previously reported data.
  •  
9.
  • Singh, Shivangi, 1996 (författare)
  • Investigating hydrothermal stability and influence of water on the activity of Cu-CHA catalysts for NH3-SCR
  • 2024
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Selective catalytic reduction of nitrogen oxides (NOx) with NH3 as a reducing agent (NH3- SCR) is a leading technology for diesel exhaust emission control. Cu-exchanged zeolites with the chabazite structure (Cu-CHA) have emerged as the preferred catalysts thanks to its high activity and hydrothermal stability. Hydrothermal stability is related to dealumination, i.e. removal of aluminum from the zeolite framework to form extraframework aluminum, at high temperatures in the presence of water vapor. Copperexchanged chabazite (Cu-CHA) zeolites have higher hydrothermal stability compared to H-chabazite (H-CHA). To understand the delayed dealumination of Cu-CHA catalysts, we have investigated the reaction paths for dealumination in H-CHA and Cu-CHA using density functional theory (DFT) calculations combined with microkinetic modeling. We find that Cu-CHA and H-CHA follow similar four-step hydrolysis processes, yet the dealumination of Cu-CHA has higher energy barriers, suggesting stabilization of the CHA structure by Cu ions. Furthermore, the preferred reaction product upon complete dealumination of Cu-CHA is a copper-aluminate like species bound to the zeolite framework. The microkinetic analysis quantifies the increased stability of Cu-CHA as compared to H-CHA. In addition to the high-temperature dealumination, we investigated the role of water on low-temperature SCR by experimentally measuring the activity and reaction order of water. The reaction order of water is found to be increasingly negative with increasing water pressure. DFT calculations reveal that water blocks the active Cu-sites and a DFT-based microkinetic model reproduces the measured change of reaction order with water pressure.
  •  
10.
  • Khokarale, Santosh G., et al. (författare)
  • One-Pot, Metal-Free Synthesis of Dimethyl Carbonate from CO2 at Room Temperature
  • 2020
  • Ingår i: Sustainable Chemistry. - : MDPI. - 2673-4079. ; 1:3, s. 298-314
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, we report on the metal-free, one-pot synthesis of industrially important dimethyl carbonate (DMC) from molecular CO2 under ambient conditions. In this process, initially the CO2 was chemisorbed through the formation of a switchable ionic liquid (SIL), [DBUH] [CH3CO3], by the interaction of CO2 with an equivalent mixture of organic superbase 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU) and methanol. The obtained SIL further reacted with methyl iodide (CH3I) to form DMC. The synthesis was carried out in both dimethyl sulfoxide (DMSO) and methanol. Methanol is preferred, as it not only served as a reagent and solvent in CO2 capture and DMC synthesis, but it also assisted in controlling the side reactions between chemical species such as CH3I and [DBUH]+ cation and increased the yield of DMC. Hence, the use of methanol avoided the loss of captured CO2 and favored the formation of DMC with high selectivity. Under the applied reaction conditions, 89% of the captured CO2 was converted to DMC. DBU was obtained, achieving 86% recovery of its salts formed during the synthesis. Most importantly, in this report we describe a simple and renewable solvent-based process for a metal-free approach to DMC synthesis under industrially feasible reaction conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 1196
Typ av publikation
tidskriftsartikel (958)
doktorsavhandling (100)
forskningsöversikt (74)
licentiatavhandling (22)
konferensbidrag (20)
bokkapitel (13)
visa fler...
rapport (6)
konstnärligt arbete (1)
bok (1)
annan publikation (1)
patent (1)
visa färre...
Typ av innehåll
refereegranskat (1040)
övrigt vetenskapligt/konstnärligt (155)
populärvet., debatt m.m. (1)
Författare/redaktör
Erdelyi, Mate, 1975 (57)
Sun, Licheng, 1962- (28)
Jannasch, Patric (27)
Baryshnikov, Glib (23)
Ågren, Hans (23)
Orthaber, Andreas, 1 ... (22)
visa fler...
Olsson, Louise, 1974 (21)
Ahlquist, Mårten S. ... (21)
Bäckvall, Jan-E. (21)
Ottosson, Henrik (18)
Cordova, Armando, 19 ... (17)
Nicholls, Ian A. (15)
Mikkola, Jyri-Pekka (15)
Grönbeck, Henrik, 19 ... (14)
Sundén, Henrik, 1978 (14)
Creaser, Derek, 1966 (13)
Moth-Poulsen, Kasper ... (13)
Li, Qizhao (13)
Bonjour, Olivier (13)
Vares, Lauri (13)
Bernin, Diana, 1979 (12)
Hallquist, Mattias, ... (12)
Atilaw, Yoseph (12)
Xie, Yongshu (12)
Liu, Jianquan (12)
Kärkäs, Markus D. (11)
Ramström, Olof (11)
Ott, Sascha (11)
Zhan, Shaoqi (11)
Shatskiy, Andrey, 19 ... (11)
Kärkäs, Markus D., 1 ... (11)
Li, Chengjie (11)
El-Seedi, Hesham (10)
Odell, Luke R (10)
Shatskiy, Andrey (10)
Salam, Muhammad Abdu ... (10)
Abbaszad Rafi, Abdol ... (9)
Zhang, Baozhong (9)
Sunnerhagen, Per, 19 ... (9)
Ho, Hoang Phuoc, 198 ... (9)
Deiana, Luca (9)
Zhang, Biaobiao (9)
Dyrager, Christine (9)
Cheah, You Wayne, 19 ... (9)
Runemark, August, 19 ... (9)
Johansson, Magnus J (9)
Peintner, Stefan, 19 ... (9)
Crespi, Stefano (9)
Kravchenko, Oleksand ... (9)
Liu, Tianqi (9)
visa färre...
Lärosäte
Uppsala universitet (321)
Chalmers tekniska högskola (252)
Kungliga Tekniska Högskolan (174)
Stockholms universitet (161)
Lunds universitet (123)
Göteborgs universitet (80)
visa fler...
Linköpings universitet (72)
Umeå universitet (69)
Mittuniversitetet (47)
Linnéuniversitetet (41)
Sveriges Lantbruksuniversitet (38)
Luleå tekniska universitet (24)
RISE (24)
Karolinska Institutet (19)
Karlstads universitet (8)
Malmö universitet (6)
Naturhistoriska riksmuseet (6)
Högskolan i Borås (3)
Högskolan Kristianstad (2)
IVL Svenska Miljöinstitutet (2)
Örebro universitet (1)
Riksantikvarieämbetet (1)
visa färre...
Språk
Engelska (1191)
Svenska (5)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1196)
Teknik (239)
Medicin och hälsovetenskap (77)
Lantbruksvetenskap (31)
Samhällsvetenskap (3)
Humaniora (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy