SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(TEKNIK OCH TEKNOLOGIER) AMNE:(Industriell bioteknik) AMNE:(Bioprocessteknik) srt2:(2020-2024)"

Sökning: AMNE:(TEKNIK OCH TEKNOLOGIER) AMNE:(Industriell bioteknik) AMNE:(Bioprocessteknik) > (2020-2024)

  • Resultat 1-10 av 240
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nickel, David, 1990 (författare)
  • Process development for platform chemical production from agricultural and forestry residues
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • As part of a bio-based economy, biorefineries are envisaged to sustainably produce platform chemicals via biochemical conversion of agricultural and forestry residues. However, supply risks, the recalcitrance of lignocellulosic biomass, and inhibitor formation during pre­treatment impair the economic feasibility of such biorefineries. In this thesis, process design and assessment were developed with the aim of addressing these hurdles and improving the cost-effectiveness of lignocellulose-derived platform chemicals. To expand the feedstock base and reduce operational costs, logging residues served as underutilised and inexpensive raw material. The major impediment in converting logging residues was their high recalcitrance and low cellulose content, which resulted in low attainable ethanol titres during simultaneous saccharification and co-fermentation (SSCF). Pretreatment optimisation reduced inhibitor formation and recalcitrance, and led to enzymatic hydrolysis yields at par with those obtained for stem wood, despite the less favourable chemical composition. Upgrading logging residues with carbohydrate-rich oat hulls increased ethanol titres to >50 g/L using batch SSCF at 20% WIS loadings, demonstrating the potential to further decrease downstream processing costs. To alleviate the toxicity of inhibitors generated during pretreatment, preadaptation was applied to Saccharomyces cerevisiae . Exposure to the inhibitors in the pretreated liquid fraction improved ethanol production during subsequent fermentation. Transferring the concept of preadaptation to lactic acid production by Bacillus coagulans cut the process times by half and more than doubled the average specific lactic acid productivity, showcasing how preadaptation could decrease operational costs. To assess the performance and robustness of process designs against process input variations, a multi-scale variability analysis framework was developed. The framework included models for bioprocess, flowsheet, techno-economic, and life cycle assessment. In a case study, multi-feed processes, in which solids and cells are fed to the process using model-based predictions, were more robust against variable cellulolytic activities than batch SSCFs in a wheat straw-based ethanol biorefinery. The developed framework can be used to identify robust biorefinery process designs, which simultaneously meet technological, economic, and environmental goals.
  •  
2.
  • Ferreira, Sofia, et al. (författare)
  • Metabolic engineering strategies for butanol production in Escherichia coli
  • 2020
  • Ingår i: Biotechnology and Bioengineering. - : Wiley. - 0006-3592 .- 1097-0290. ; 117:8, s. 2571-2587
  • Forskningsöversikt (refereegranskat)abstract
    • The global market of butanol is increasing due to its growing applications as solvent, flavoring agent, and chemical precursor of several other compounds. Recently, the superior properties of n-butanol as a biofuel over ethanol have stimulated even more interest. (Bio)butanol is natively produced together with ethanol and acetone by Clostridium species through acetone-butanol-ethanol fermentation, at noncompetitive, low titers compared to petrochemical production. Different butanol production pathways have been expressed in Escherichia coli, a more accessible host compared to Clostridium species, to improve butanol titers and rates. The bioproduction of butanol is here reviewed from a historical and theoretical perspective. All tested rational metabolic engineering strategies in E. coli to increase butanol titers are reviewed: manipulation of central carbon metabolism, elimination of competing pathways, cofactor balancing, development of new pathways, expression of homologous enzymes, consumption of different substrates, and molecular biology strategies. The progress in the field of metabolic modeling and pathway generation algorithms and their potential application to butanol production are also summarized here. The main goals are to gather all the strategies, evaluate the respective progress obtained, identify, and exploit the outstanding challenges.
  •  
3.
  • Zhang, Yiming, 1986, et al. (författare)
  • Engineering yeast mitochondrial metabolism for 3-hydroxypropionate production
  • 2023
  • Ingår i: Biotechnology for Biofuels and Bioproducts. - 2731-3654. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: With unique physiochemical environments in subcellular organelles, there has been growing interest in harnessing yeast organelles for bioproduct synthesis. Among these organelles, the yeast mitochondrion has been found to be an attractive compartment for production of terpenoids and branched-chain alcohols, which could be credited to the abundant supply of acetyl-CoA, ATP and cofactors. In this study we explored the mitochondrial potential for production of 3-hydroxypropionate (3-HP) and performed the cofactor engineering and flux control at the acetyl-CoA node to maximize 3-HP synthesis. Results: Metabolic modeling suggested that the mitochondrion serves as a more suitable compartment for 3-HP synthesis via the malonyl-CoA pathway than the cytosol, due to the opportunity to obtain a higher maximum yield and a lower oxygen consumption. With the malonyl-CoA reductase (MCR) targeted into the mitochondria, the 3-HP production increased to 0.27 g/L compared with 0.09 g/L with MCR expressed in the cytosol. With enhanced expression of dissected MCR enzymes, the titer reached to 4.42 g/L, comparable to the highest titer achieved in the cytosol so far. Then, the mitochondrial NADPH supply was optimized by overexpressing POS5 and IDP1, which resulted in an increase in the 3-HP titer to 5.11 g/L. Furthermore, with induced expression of an ACC1 mutant in the mitochondria, the final 3-HP production reached 6.16 g/L in shake flask fermentations. The constructed strain was then evaluated in fed-batch fermentations, and produced 71.09 g/L 3-HP with a productivity of 0.71 g/L/h and a yield on glucose of 0.23 g/g. Conclusions: In this study, the yeast mitochondrion is reported as an attractive compartment for 3-HP production. The final 3-HP titer of 71.09 g/L with a productivity of 0.71 g/L/h was achieved in fed-batch fermentations, representing the highest titer reported for Saccharomyces cerevisiae so far, that demonstrated the potential of recruiting the yeast mitochondria for further development of cell factories.
  •  
4.
  • Mukesh Kumar, Awasthi, et al. (författare)
  • Bacterial dynamics during the anaerobic digestion of toxic citrus fruit waste and semi-continues volatile fatty acids production in membrane bioreactors
  • 2022
  • Ingår i: Fuel. - : Elsevier. - 0016-2361 .- 1873-7153. ; 319
  • Tidskriftsartikel (refereegranskat)abstract
    • Citrus wastes (CW) are normally toxic to anaerobic digestion (AD) because of flavors such as D-limonene. In this study, bacterial community was evaluated during volatile fatty acids (VFAs) production from CW inoculated by sludge in a membrane bioreactor (MBR) using semi-continuous AD with different organic loading rates (OLR). Four treatments including untreated CW filled with 4 and 8 g center dot VS center dot L(-1)d(-1) OLR (UOLR4 and UOLR8), pretreated Dlimonene-free CW filled with 4 and 8 g center dot VS center dot L(-1)d(-1) OLR (POLR4 and POLR8). The initial inoculum and the CW mixture (DAY0) was used as control for comparison. There was an obviously higher bacterial diversity in raw material (66848 sequences in DAY0), while decreased after AD and higher in POLR4 and POLR8 (65239 and 63916) than UOLR4 and UOLR8 (49158 and 51936). The key bacterial associated with VFAs production mainly affiliated to Firmicutes (37.35-84.73%), Bacteroidetes (0.48-36.87%), and Actinobacteria (0.35-29.38%), and the key genus composed of Lactobacillus, Prevotella, Bacillus, Bacteroides and Olsenella which contributed in VFA generation by degradable complex organic compounds. Noticeably, methanogen completely suppressed after MBR-AD and UOLR4 has greater acid utilizing bacteria (70.09%).
  •  
5.
  • Perruca Foncillas, Raquel (författare)
  • Evaluation of biosensors and flow cytometry as monitoring tools in lignocellulosic bioethanol production
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The significant environmental impact of the current fossil fuel-based industry is a major concern for society. Consequently, various initiatives are being undertaken to establish a more sustainable industrial model. One example is via the transition from conventional fossil fuel refineries to biorefineries, where renewable raw materials are utilised. Amongst these raw materials, the use of lignocellulosic biomass from agricultural residues or wood has been favoured, as it does not compete with food or land resources. In particular, extensive research has been conducted to produce biofuels such as bioethanol from lignocellulosic biomass, referred to as second-generation (2G) bioethanol.In this thesis work, the goal was to develop and apply new tools to address challenges encountered in 2G bioethanol production. Specifically, the work focused on monitoring the impact of inhibitory compounds and mixed sugars on the fermentation performance of the yeast Saccharomyces cerevisiae.Inhibitory compounds are released during the pretreatment of the lignocellulosic biomass, a crucial step necessary to break down its complex structure and to enhance sugar accessibility This thesis work specifically focused on the redox imbalance induced in cells exposed to furaldehydes such as furfural or HMF. To study this effect, a biosensor for redox imbalance, TRX2p-yEGFP, was introduced into the cells and its fluorescence signal was monitored in real-time using flow cytometry. One potential strategy for enhancing the cells' tolerance to these inhibitors is to prepare them by introducing lignocellulosic hydrolysate in the feed during cell propagation. During this pre-exposure phase, a transient induction of the TRX2p-yEGFP biosensor signal for redox imbalance was observed, which gradually diminished. This indicated that, by the time of cell collection, the cells had adapted to the inhibitor concentration within the culture. To examine whether an increased induction level of the biosensor at the time of cell collection influenced the fermentation performance, an automated control system was devised. This system utilised data from the flow cytometry analysis to control the level of inhibitors in the cultivation feed. Consequently, when the biosensor signal began to decline, higher amounts of inhibitors were added, as long as the addition did not lead to an increase in the number of damaged cells.A second biosensor was used in this thesis work to investigate the sugar signalling response of S. cerevisiae to the presence of xylose. Xylose is the second most abundant sugar in lignocellulosic biomass; however, naturally, S. cerevisiae cannot metabolise it. Genetically modified S. cerevisiae strains have been generated by introducing heterologous pathways such as the XR/XDH or XI pathways to enable xylose consumption. Nevertheless, xylose consumption rates remain lower compared to glucose. Sugar signalling emerged as a potential bottleneck in the efficient utilisation of xylose. In the present work, the response of the SUC2p-yEGFP biosensor for sugar signalling was found to vary significantly depending on the pathway employed. A higher induction for the strains carrying the XI pathway was associated with poorer growth on xylose. Lastly, the effect of introducing a xylose epimerase capable of catalysing the conversion between the two anomers, α-D-xylopyranose and β-D-xylopyranose, as a strategy to improve xylose consumption was studied. The effect was enzyme-specific and proved to be particularly beneficial in strains utilising the xylose isomerase from Lachnoclostridium phytofermentans.In conclusion, the results presented in this thesis demonstrate how biosensors can facilitate the understanding and monitoring of intracellular processes that occur within the cell under stress conditions and be a key tool for improving production processes.
  •  
6.
  • Kanagarajan, Selvaraju, et al. (författare)
  • Production of functional human fetal hemoglobin in Nicotiana benthamiana for development of hemoglobin-based oxygen carriers
  • 2021
  • Ingår i: International Journal of Biological Macromolecules. - : Elsevier BV. - 0141-8130 .- 1879-0003. ; 184, s. 955-966
  • Tidskriftsartikel (refereegranskat)abstract
    • Hemoglobin-based oxygen carriers have long been pursued to meet clinical needs by using native hemoglobin (Hb) from human or animal blood, or recombinantly produced Hb, but the development has been impeded by safety and toxicity issues. Herewith we report the successful production of human fetal hemoglobin (HbF) in Nicotiana benthamiana through Agrobacterium tumefaciens-mediated transient expression. HbF is a heterotetrameric protein composed of two identical α- and two identical γ-subunits, held together by hydrophobic interactions, hydrogen bonds, and salt bridges. In our study, the α- and γ-subunits of HbF were fused in order to stabilize the α-subunits and facilitate balanced expression of α- and γ-subunits in N. benthamiana. Efficient extraction and purification methods enabled production of the recombinantly fused endotoxin-free HbF (rfHbF) in high quantity and quality. The transiently expressed rfHbF protein was identified by SDS-PAGE, Western blot and liquid chromatography-tandem mass spectrometry analyses. The purified rfHbF possessed structural and functional properties similar to native HbF, which were confirmed by biophysical, biochemical, and in vivo animal studies. The results demonstrate a high potential of plant expression systems in producing Hb products for use as blood substitutes.
  •  
7.
  • Persson, Michael (författare)
  • Integrated starch and lignocellulose based biorefineries : Synergies and opportunities
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The transition from a reliance on fossil resources to the use of renewables for the production of energy, fuels and chemicals is essential for ensuring the sustainability of continued human development. Plant-based biomass is a renewable resource which can be transformed into all of these products. However, biomass is a heterogeneous material composed of several fractions with different chemical properties. Furthermore, the composition varies between species. In order to maximize the environmental and economic sustainability of biomass-based production, production systems that utilize all fractions of biomass to their fullest potential have to be developed. This is the goal of a biorefinery.The work presented in this thesis mainly revolves around biorefineries that utilize feedstocks rich in starch and lignocellulose together to produce ethanol in an integrated process. The work is focused on comparing the performance of stand-alone and integrated biorefineries by investigating the impact that feedstock blending has on parameters important for the process economy, identifying potential synergies from integration and opportunities for improved material utilization.It was found in this work, that the integration of starch- and lignocellulose-based feedstocks could result in improved ethanol productivity and yield during hydrolysis and fermentation compared to a stand-alone lignocellulose process without losing performance compared to a stand-alone starch-based process.The prospects of introducing a sequential fractionation of the lignocellulosic biomass prior to integration was investigated. It was shown that this method could be used to produce separate fractions enriched in cellulose and lignin as well as improving the hydrolyzabilty of the cellulose fraction. This kind of fractionation could facility the utilization of all biomass fractions in both feedstocks by creating new byproduct streams as well as decreasing negative impacts on existing byproduct streams.
  •  
8.
  • Gustafsson, Marcus, 1987-, et al. (författare)
  • Climate performance of liquefied biomethane with carbon dioxide utilization or storage
  • 2024
  • Ingår i: Renewable and sustainable energy reviews. - : Elsevier. - 1364-0321 .- 1879-0690. ; 192
  • Tidskriftsartikel (refereegranskat)abstract
    • In the process of upgrading biogas to biomethane for gas grid injection or use as a vehicle fuel, biogenic carbon dioxide (CO₂) is separated and normally emitted to the atmosphere. Meanwhile, there are a number of ways of utilizing CO₂ to reduce the dependency on fossil carbon sources. This article assesses the climate performance of liquefied biomethane for road transport with different options for utilization or storage of CO₂. The analysis is done from a life cycle perspective, covering the required and avoided processes from biogas production to the end use of biomethane and CO₂. The results show that all of the studied options for CO₂ utilization can improve the climate performance of biomethane, in some cases contributing to negative CO₂ emissions. One of the best options, from a climate impact perspective, is to use the CO₂ internally to produce more methane, although continuous supply of hydrogen from renewable sources can be a challenge. Another option that stands out is concrete curing, where CO₂ can both replace conventional steam curing and be stored for a long time in mineral form. Storing CO₂ in geological formations can also lead to negative CO₂ emissions. However, with such long-term storage solutions, opportunities to recycle biogenic CO₂ are lost, together with the possibility of de-fossilizing processes that require carbon, such as chemical production and horticulture.
  •  
9.
  • Helstad, Amanda, et al. (författare)
  • Protein extraction from cold-pressed hempseed press cake: From laboratory to pilot scale
  • 2022
  • Ingår i: Journal of Food Science. - : Wiley. - 1750-3841 .- 0022-1147. ; 87:1, s. 312-325
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract: During the production of industrial hempseed oil, a press cake is formed as a byproduct, which is often used as animal feed although it contains a high amount of protein that could be used for human consumption. Extracting this valuable protein would reduce food waste and increase the availability of plant-based protein. A protein extraction process based on the pH-shift method was adapted to improve the protein extraction yield from industrial hempseed press cake (HPC). Parameters such as alkali extraction pH, time, and temperature, as well as isoelectric precipitation pH, were investigated in laboratory scale and were thereafter carried out in a pilot trial to explore the suitability for future scale up. The phytic acid content of the extracted protein isolate was also analyzed to investigate any potential inhibitory effect on mineral absorption. A final protein yield of 60.6%, with a precipitated protein content of 90.3% (dw), was obtained using a constant alkali extraction pH of 10.5 for 1 h at room temperature, followed by precipitation at pH 5.5. The pilot trial showed promising results for the future production of industrial hemp protein precipitate on a larger scale, showing a protein yield of 57.0% and protein content of 90.8% (dw). The amount of phytic acid in the protein isolate produced in the optimal laboratory experiment and in the pilot trial was 0.595 and 0.557 g phytic acid/100 g dw, respectively, which is 83%–88% less than in the HPC. This is in the range of other plant-based protein sources (tofu, kidney beans, peas, etc.). Practical Application: Industrial hempseed press cake is a byproduct in the production of industrial hempseed oil, which is mostly used as animal feed, but has the potential to become an additional source of plant-based protein for human consumption with a suitable protein extraction method. The extracted hemp protein could be used to develop new plant-based dairy or meat analog products.
  •  
10.
  • Malina, Carl, 1992, et al. (författare)
  • Adaptations in metabolism and protein translation give rise to the Crabtree effect in yeast
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:51
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerobic fermentation, also referred to as the Crabtree effect in yeast, is a well-studied phenomenon that allows many eukaryal cells to attain higher growth rates at high glucose availability. Not all yeasts exhibit the Crabtree effect, and it is not known why Crabtree-negative yeasts can grow at rates comparable to Crabtree-positive yeasts. Here, we quantitatively compared two Crabtree-positive yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, and two Crabtree-negative yeasts, Kluyveromyces marxianus and Scheffersomyces stipitis, cultivated under glucose excess conditions. Combining physiological and proteome quantification with genome-scale metabolic modeling, we found that the two groups differ in energy metabolism and translation efficiency. In Crabtree-positive yeasts, the central carbon metabolism flux and proteome allocation favor a glucose utilization strategy minimizing proteome cost as proteins translation parameters, including ribosomal content and/or efficiency, are lower. Crabtree-negative yeasts, however, use a strategy of maximizing ATP yield, accompanied by higher protein translation parameters. Our analyses provide insight into the underlying reasons for the Crabtree effect, demonstrating a coupling to adaptations in both metabolism and protein translation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 240
Typ av publikation
tidskriftsartikel (181)
forskningsöversikt (25)
doktorsavhandling (17)
bokkapitel (6)
konferensbidrag (5)
samlingsverk (redaktörskap) (3)
visa fler...
rapport (1)
annan publikation (1)
licentiatavhandling (1)
visa färre...
Typ av innehåll
refereegranskat (209)
övrigt vetenskapligt/konstnärligt (30)
populärvet., debatt m.m. (1)
Författare/redaktör
Christakopoulos, Pau ... (61)
Rova, Ulrika (58)
Matsakas, Leonidas (57)
Taherzadeh, Mohammad ... (23)
Patel, Alok, Dr. 198 ... (22)
Chotteau, Véronique, ... (12)
visa fler...
Sarkar, Omprakash (11)
Topakas, Evangelos (10)
Mahboubi, Amir (9)
Hrůzová, Kateřina (8)
Hodge, David B. (8)
Karnaouri, Anthi (8)
Schwarz, Hubert (7)
Martin, Carlos (7)
Krige, Adolf (6)
Singh, Sandip K. (6)
Nielsen, Jens B, 196 ... (5)
Lidén, Gunnar (5)
Hatti-Kaul, Rajni (5)
Olsson, Lisbeth, 196 ... (5)
Wallberg, Ola (5)
Monção, Maxwel (5)
Nilsson, Bernt (4)
Sar, Taner, Postdoct ... (4)
Jönsson, Leif J (4)
Bajracharya, Suman (4)
Mukesh Kumar, Awasth ... (4)
Hegg, Eric L. (4)
Bao, Jie (4)
Ferreira, Jorge (4)
Romero-Soto, Luis (4)
Gorwa-Grauslund, Mar ... (3)
Undeland, Ingrid, 19 ... (3)
Hober, Sophia, Profe ... (3)
Andersson, Niklas (3)
Bettiga, Maurizio, 1 ... (3)
Thuvander, Johan (3)
Cetecioglu, Zeynep, ... (3)
Gomis Fons, Joaquín (3)
Antonopoulou, Io, 19 ... (3)
Atasoy, Merve, PhD, ... (3)
Harirchi, Sharareh (3)
Sar, Taner, Postdoct ... (3)
Wainaina, Steven (3)
Zhang, Liang (3)
Carrasco, Cristhian (3)
Saulnier, Brian K. (3)
Campos, Joana (3)
Castan, Andreas (3)
Kalogiannis, Konstan ... (3)
visa färre...
Lärosäte
Luleå tekniska universitet (101)
Chalmers tekniska högskola (37)
Kungliga Tekniska Högskolan (31)
Lunds universitet (31)
Högskolan i Borås (29)
Umeå universitet (13)
visa fler...
RISE (9)
Sveriges Lantbruksuniversitet (9)
Linköpings universitet (7)
Göteborgs universitet (2)
Linnéuniversitetet (2)
Karolinska Institutet (2)
Uppsala universitet (1)
Högskolan i Halmstad (1)
Stockholms universitet (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (240)
Forskningsämne (UKÄ/SCB)
Teknik (240)
Naturvetenskap (51)
Lantbruksvetenskap (13)
Medicin och hälsovetenskap (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy