SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(TEKNIK OCH TEKNOLOGIER Maskinteknik Tribologi) srt2:(2020-2024)"

Sökning: AMNE:(TEKNIK OCH TEKNOLOGIER Maskinteknik Tribologi) > (2020-2024)

  • Resultat 1-10 av 441
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bayani, Mohsen, 1981 (författare)
  • Squeak and Rattle Prediction for Robust Product Development in the automotive industry
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Squeak and rattle are nonstationary, irregular, and impulsive sounds that are audible inside the car cabin. For decades, customer complaints about squeak and rattle have been, and still are, among the top quality issues in the automotive industry. These annoying sounds are perceived as quality defect indications and burden warranty costs to the car manufacturers. Today, the quality improvements regarding the persistent type of sounds in the car, as well as the increasing popularity of electric engines, as green and quiet propulsion solutions, stress the necessity for attenuating annoying sounds like squeak and rattle more than in the past. The economical and robust solutions to this problem are to be sought in the pre-design-freeze phases of the product development and by employing design-concept-related practices. To achieve this goal, prediction and evaluation tools and methods are required to deal with the squeak and rattle quality issues upfront in the product development process. The available tools and methods for the prediction of squeak and rattle sounds in the pre-design-freeze phases of a car development process are not yet sufficiently mature. The complexity of the squeak and rattle events, the existing knowledge gap about the mechanisms behind the squeak and rattle sounds, the lack of accurate simulation and post-processing methods, as well as the computational cost of complex simulations are some of the significant hurdles in this immaturity. This research addresses this problem by identifying a framework for the prediction of squeak and rattle sounds based on a cause-and-effect diagram. The main domains and the elements and the sub-contributors to the problem in each domain within this framework are determined through literature studies, field explorations and descriptive studies conducted on the subject. Further, improvement suggestions for the squeak and rattle evaluation and prediction methods are proposed through prescriptive studies. The applications of some of the proposed methods in the automotive industry are demonstrated and examined in industrial problems. The outcome of this study enhances the understanding of some of the parameters engaged in the squeak and rattle generation. Simulation methods are proposed to actively involve the contributing factors studied in this work for squeak and rattle risk evaluation. To enhance the efficiency and accuracy of the risk evaluation process, methods were investigated and proposed for the system excitation efficiency, modelling accuracy and efficiency and quantification of the response in the time and frequency domains. The demonstrated simulation methods besides the improved understanding of the mechanisms behind the phenomenon can facilitate a more accurate and robust prediction of squeak and rattle risk during the pre-design-freeze stages of the car development.
  •  
2.
  • Li, Xiaojian, 1991, et al. (författare)
  • A new method for performance map prediction of automotive turbocharger compressors with both vaneless and vaned diffusers
  • 2021
  • Ingår i: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. - : SAGE Publications. - 2041-2991 .- 0954-4070. ; 235:6, s. 1734-1747
  • Tidskriftsartikel (refereegranskat)abstract
    • A new approach to predict the performance maps of automotive turbocharger compressors is presented. Firstly, a polynomial equation is applied to fit the experimental data of flow coefficient ratios for the centrifugal compressors with both vaneless and vaned diffusers. Based on this equation, the choke and surge flow coefficients under different machine Mach numbers can be quickly predicted. Secondly, a physically based piecewise elliptic equation is used to define compressors’ characteristic curves in terms of efficiency ratio. By introducing the flow coefficient ratio into the efficiency correlation, the empirical coefficients in the piecewise elliptic equation are uniquely calibrated by the experimental data, forming a unified algebraic equation to match the efficiency maps of the compressors with both vaneless and vaned diffusers. Then, a new universal equation, which connects the work coefficient, the impeller outlet flow coefficient and the non-dimensional equivalent impeller outlet width, is derived by using classical aerothermodynamic method. The off-design pressure ratio is predicted based on the equivalent impeller outlet width with less knowledge of the compressor geometry and no empirical coefficients. Finally, three state-of-the-art turbocharger compressors (one with vaneless diffuser, two with vaned diffusers) are chosen to validate the proposed method, and the results show a satisfactory accuracy for the performance map prediction. This method can be used for the preliminary design of turbocharger compressors with both vaneless and vaned diffusers, or to assess the design feasibility and challenges of the given design specifications.
  •  
3.
  •  
4.
  • Kumar, Mayank, 1991- (författare)
  • Friction in threaded fasteners : Influence of materials and tooling
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Threaded fasteners represent the most common type of machine element, with a unique function that facilitates ease of assembly and disassembly. This ease of disassembly allows machine parts to be reused, refurbished, and recycled. Easy as these components are to assemble, several factors must be considered to achieve the desired clamp force and to utilize the fastener to its full load capacity. The research presented in the thesis compares different tightening strategies and assembly tools to show that the clamp force and it´s scatter are influenced by the variation in the coefficient of friction (CoF) to a much larger extent than by the accuracy of an assembly tool. The research therefore focus on understanding the frictional response in a threaded fastener joint during tightening.A range of design and assembly factors are considered to identify how to increase reliability of the threaded fastener joints. These factors include tightening speed, coating, surface topography, fastener storage conditions, cutting fluid residue and joint material. A torque-controlled, two-step tightening method was mainly used in the studies as it is widely practiced across the production floor of the motor vehicle and general industries to tighten threaded fastener joints. A state-of-the-art friction test rig (FTR) was built to quantify variations in the CoF in the thread and under-head contacts during tightening. Coatings and contact surfaces are also characterized using SEM, FIB, indenters, and optical microscopes to gain an insight to find the likely reasons behind CoF variation. Fasteners with different Zn-based coatings were tightened on plates with surface topographies similar to those found in the motor vehicle industry. The samples were not cleaned before the testing but used "as-received" from the supplier. The degree of damage to the joint surface and fastener thread from the tightening depends on the hardness of the coating. The hardest coating (Zn-Ni) remained relatively unchanged but gave twice as high CoF in the under-head contact compared to the softest coating (Zn-flake). The under-head friction often dominates the tightening process and may be significantly affected by the joint surface topography and the level of cleanliness. In the automotive industry, many parts to be assembled are not thoroughly cleaned, increasing the risk of cutting fluid residue on the joint surface. Different types of cutting fluids were compared in a study with fasteners tightened against “as-received" and cleaned plates. It was shown that CoF might drastically decrease depending on the coating and cutting fluid types. An ester-based fluid performed best, providing the lowest CoF in the under-head contact due to its higher viscosity and polarity. A water-based fluid showed a significantly larger scatter. Water can also influence friction due differences in humidity and temperature. Sometimes fasteners are stored outside a factory which could lead to water diffusion in the coating in hot-humid climate or condensation of water on the fastener surface when it is brought from the outside storage at sub-zero temperatures into the production hall. Water on the coating and inside of it could lead to low CoF, with overtightening and fastener failure as a result. Four Zn-based coatings were compared and showed different response depending on the coating structure and topcoat. Another way to reduce CoF is to use variable speed tightening. It will also increase productivity, as it is faster. It will also improve operator ergonomics, as it gives much lower reaction torque. Much higher CoF was found for EPZ coating when tightened at a constant and very low speed, 5 rpm, due to cohesion that resulted in material transfer, compared to CoF during high, variable speed tightening. At the same time, speed had negligible influence on the CoF when using soft Zn-flake coating as the coating easily sheared off, acting as a solid lubricant.A soft coating is also practical when used in contact with parts made using additive manufacturing (AM). The AM parts are often rough, but a soft coating can mitigate an increase in the under-head CoF. An interesting finding was that the cheapest solution of using an uncoated fastener works very well. An anti-corrosion oil on the plain fastener helped in achieving low CoF. When the AM plate was machined, the CoF and surface damage significantly increased due to the lay of the surface topography created by machining. The findings presented in the thesis increase understanding of how various design and assembly factors govern friction in the thread and under-head contacts. The under-head contact dominates friction response. A proper selection and adjustment of these factors will help design engineers to optimize joint designs and achieve high fastener strength utilization.
  •  
5.
  • Karlsson, Stefan, 1984-, et al. (författare)
  • Non-destructive strength testing of microindented float glass by a nonlinear acoustic method
  • 2023
  • Ingår i: Construction and Building Materials. - 0950-0618 .- 1879-0526. ; 391
  • Tidskriftsartikel (refereegranskat)abstract
    • The present paper describes a method for non-destructive testing of the glass strength. Square 10 × 10 cm2 samples of annealed float glass was inflicted with a controlled defect in the centre of the atmospheric side using Vickers microindentation-induced cracking with a force of 2 N, 5 N and 10 N and compared to an un-indented reference. The samples were non-destructively tested using a nonlinear acoustic wave method resulting in defect values. The average of the defect values was found to linearly correlate to the indentation force in a log–log relationship. The samples were subsequently tested in a ring-on-ring setup that allows for an equibiaxial stress state. The indentation-induced cracking gave practically realistic strength values in the range of 45 to 110 MPa. The individual sample values for failure stress as a function of normalized defect value show linear trends with approximately half of the data within 95% confidence limit. In summary, this study provides an initial proof-of-concept for a non-destructive testing of the strength of glass.
  •  
6.
  • Persson, Erik, et al. (författare)
  • Clamp Force Accuracy in Threaded Fastener Joints Using Different Torque Control Tightening Strategies
  • 2021
  • Ingår i: SAE technical paper series. - 400 Commonwealth Drive, Warrendale, PA, United States : SAE International. - 0148-7191. ; :2021
  • Tidskriftsartikel (refereegranskat)abstract
    • The assembly of threaded fasteners may seem straightforward. However, there are many factors to consider to achieve quality tightened joints, including the joint material, threaded fastener, and coatings. Additionally, there are many assembly tool types and torque application strategies to choose from. This investigation studies the tightening speed dynamics when using torque as a control method. The clamp force obtained in the joint changes when tightening at high speed or when the speed varies greatly during tightening. This type of tightening is called highly dynamic. Highly dynamic torque control tightening strategies are studied, such as impact, pulse, and inertia-controlled methods, and compared with the continuous drive strategy, which is a standard dynamic torque tightening method. The clamp force and its scatter caused by the torque accuracy in the assembly tool type are investigated for the abovementioned torque application strategies. The study also focuses on the different results obtained from the International Organization for Standardization’s (ISO) 16047:2005 (Fasteners-Torque/clamp force testing) standard compared to a production-like setup.
  •  
7.
  • Munavirov, Bulat, 1986- (författare)
  • Ionic lubricants : Molecular features and surface protection mechanisms
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis ionic liquids (ILs) are investigated as prospective candidates for lubrication. Three custom synthesized phosphonium orthoborate type ILs were extensively studied from the prospective of molecular structuring both in bulk and at the interface and from the prospective of their lubricating performance as neat lubricants and as additives in oils. A wide selection of contact geometries and surface finishes has been utilized to broaden the applicability of the achieved results. Tribological performance of orthoborate ILs when used as additives in oils was additionally benchmarked against two commercial ILs - phosphonium phosphate, phosphonium phosphinate.Studies on the bulk molecular mobility in the orthoborate ILs performed by means of Pulsed Field Gradient Nuclear Magnetic Resonance (PFG NMR) clearly showed that the distinct molecular organisation in these systems depends on the chemical structure of orthoborate anion. These results demonstrated a clear correlation with tests of the tribological performance of neat orthoborate ILs, where friction reduction, wear protection and particularities of surface interactions were shown to be clearly defined by anion chemistry. Moreover, this finding was further proven to be relevant when using ILs as additives in oils. A comparison of tribological performance of orthoborate ILs with phosphinate and phosphate ILs showed that a change in anion structure could basically revert the tribological performance of oil solution: from lower to higher friction and wear when compared to the neat oil lubricity.One of the orthoborate ILs - trihexyltetradecylphosphonium bis(mandelato)borate (PBMB) – was selected for a thorough study when used as a sacrificial oil additive. A joint PFG NMR and Quartz Crystall Microbalance (QCM) study demonstrated the build-up of a PBMB rich film on a electrically charged surface. This provided an experimental prove for the possibility of electrostatically driven physisorption of ILs. Tribological tests performed on the same oil composition demonstrated that PBMB when reaching the surface triggered tribochemical reactions and formation of a surface protective tribofilm. Phosphonium orthoborate ILs demonstrated an outstanding performance (decreasing wear by up to 92% and friction by up to 50%) in lubricated mechanical contacts, both when used as neat lubricants and when used as additives. These results are based on an extensive study employing a wide variation in contact geometries, surface finish and motion type. The details of such performance are investigated through an extensive surface analysis and further linked to the chemical structure of the anion.
  •  
8.
  • Wojas, Natalia, et al. (författare)
  • Nanoscale Wear and Mechanical Properties of Calcite : Effects of Stearic Acid Modification and Water Vapor
  • 2021
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 37:32, s. 9826-9837
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the wear of mineral fillers is crucial for controlling industrial processes, and in the present work, we examine the wear resistance and nanomechanical properties of bare calcite and stearic acid-modified calcite surfaces under dry and humid conditions at the nanoscale. Measurements under different loads allow us to probe the situation in the absence and presence of abrasive wear. The sliding motion is in general characterized by irregular stick-slip events that at higher loads lead to abrasion of the brittle calcite surface. Bare calcite is hydrophilic, and under humid conditions, a thin water layer is present on the surface. This water layer does not affect the friction force. However, it slightly decreases the wear depth and strongly influences the distribution of wear particles. In contrast, stearic acid-modified surfaces are hydrophobic. Nevertheless, humidity affects the wear characteristics by decreasing the binding strength of stearic acid at higher humidity. A complete monolayer coverage of calcite by stearic acid results in a significant reduction in wear but only a moderate reduction in friction forces at low humidity and no reduction at 75% relative humidity (RH). Thus, our data suggest that the wear reduction does not result from a lowering of the friction force but rather from an increased ductility of the surface region as offered by the stearic acid layer. An incomplete monolayer of stearic acid on the calcite surface provides no reduction in wear regardless of the RH investigated. Clearly, the wear properties of modified calcite surfaces depend crucially on the packing density of the surface modifier and also on the air humidity. 
  •  
9.
  • Vilardell, A. M., et al. (författare)
  • B2-structured Fe3Al alloy manufactured by laser powder bed fusion : Processing, microstructure and mechanical performance
  • 2023
  • Ingår i: Intermetallics (Barking). - : Elsevier. - 0966-9795 .- 1879-0216. ; 156
  • Tidskriftsartikel (refereegranskat)abstract
    • Prealloyed Fe3Al was successfully manufactured by laser powder bed fusion. The best set of process parameters led to parts with a relative density of 99.5 %, a surface roughness, Sa, of 31.5 ± 5.6 μm and a hardness of 319 ± 14 HV0.1. Its microstructure as well as its mechanical properties at room and high temperatures were analyzed. The results of the chemical composition showed minor variations in aluminum content oscillating between 21 and 28 at.% along the melt pool. Additionally, elongated grains were observed to grow parallel to the building direction, as well as the development of a weak 001 texture along the building direction. The mechanical properties were influenced by the temperature. Compression tests showed a loss in strength with the increase in temperature, from a yield strength of 621 ± 40 MPa at room temperature to 89 ± 20 MPa at 650 °C. Reciprocating sliding wear tests showed that fragmentation of the intermetallic at room temperature occurs, whereas plastic deformation dominated at higher temperatures. For all temperatures, tribochemical wear was also present due to the oxidation of wear debris. 
  •  
10.
  • Niebles Atencio, Bercelay, 1979, et al. (författare)
  • Experiments and Lattice-Boltzmann Simulation of Flow in a Vertically Aligned Gearbox
  • 2023
  • Ingår i: Journal of Tribology. - 0742-4787 .- 1528-8897. ; 145:11
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a study of the oil flow in a vertically arranged FZG gearbox. The splash and churning losses are experimentally evaluated using measurements of the resistance torque. Using high speed imaging, the instantaneous oil splashing inside the gearbox is also presented and compared with Computational Fluid Dynamics (CFD) results from the Lattice-Boltzmann method (LBM), instead of the traditional grid-based finite volume method. Four different configurations, including a spur gear based on the standard FZG geometry and a disc pair wheel-pinion with the same tip diameters of the standard geometries are used. The experiments cover a range from 500 to 3000 rpm and three oil levels are studied. For the CFD simulations, the same oil levels and rotational speeds are used. The experimental results indicate torque differences depending on the oil level and the configuration. The splashing pattern is also different from the standard horizontal FZG case, which is typically studied in the literature. On the other hand, the CFD simulations and flow visualization experiments are in relative agreement with one another. The similarities and differences in the torque values for the different configurations and the splashing pattern for both experiments and CFD simulations are analyzed and discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 441
Typ av publikation
tidskriftsartikel (340)
konferensbidrag (39)
doktorsavhandling (34)
forskningsöversikt (13)
bokkapitel (5)
rapport (3)
visa fler...
annan publikation (3)
licentiatavhandling (3)
bok (1)
visa färre...
Typ av innehåll
refereegranskat (383)
övrigt vetenskapligt/konstnärligt (58)
Författare/redaktör
Shi, Yijun (52)
Larsson, Roland (42)
Almqvist, Andreas (37)
Björling, Marcus, 19 ... (29)
Olofsson, Ulf, 1962- (25)
Marklund, Pär (23)
visa fler...
Emami, Nazanin (23)
Hardell, Jens (22)
Prakash, Braham (17)
Wahlström, Jens (16)
Pelcastre, Leonardo (16)
Glavatskih, Sergei (15)
Mu, Liwen (12)
Leckner, Johan (12)
Hansen, Jonny (12)
Kalliorinne, Kalle (11)
Zhao, Jun (11)
Rutland, Mark W., Pr ... (10)
Jacobson, Staffan, P ... (10)
Lyu, Yezhe, 1987- (9)
Vrček, Aleks, 1991- (9)
Hjelm, Rikard (9)
Krajnik, Peter, 1977 (8)
Heinrichs, Jannica (8)
Berglund, Kim, 1982- (7)
Pålsson, Björn, 1981 (7)
Johansson, Pontus (7)
Westbroek, René (7)
Zhang, Renyun (6)
Klement, Uta, 1962 (6)
Larsson, Elin (6)
Vuorinen, Esa, assoc ... (6)
Everitt, Carl-Magnus ... (6)
Wiklund, Urban (5)
Claesson, Per M. (5)
Nielsen, Jens, 1963 (5)
Ekberg, Anders, 1967 (5)
Kabo, Elena, 1972 (5)
Andersson, Henrik, D ... (5)
Wallqvist, Viveca (5)
Lu, Xiaohua (5)
Hummelgård, Magnus, ... (5)
Kassman Rudolphi, Ås ... (5)
Örtegren, Jonas, 197 ... (5)
Minami, Ichiro (5)
Kalin, Mitjan (5)
Hua, Jing (5)
Luo, Zhenyang (5)
Wojas, Natalia (5)
Decrozant-Triquenaux ... (5)
visa färre...
Lärosäte
Luleå tekniska universitet (206)
Kungliga Tekniska Högskolan (96)
Chalmers tekniska högskola (86)
Lunds universitet (44)
Uppsala universitet (22)
RISE (17)
visa fler...
Högskolan i Halmstad (8)
Mittuniversitetet (7)
Högskolan Väst (5)
Karlstads universitet (4)
Högskolan Dalarna (4)
Blekinge Tekniska Högskola (4)
VTI - Statens väg- och transportforskningsinstitut (4)
Linköpings universitet (3)
Sveriges Lantbruksuniversitet (3)
Jönköping University (2)
Högskolan i Skövde (2)
Linnéuniversitetet (2)
Göteborgs universitet (1)
Stockholms universitet (1)
Örebro universitet (1)
Södertörns högskola (1)
visa färre...
Språk
Engelska (439)
Svenska (1)
Tyska (1)
Forskningsämne (UKÄ/SCB)
Teknik (441)
Naturvetenskap (35)
Medicin och hälsovetenskap (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy