SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L4X0:0348 467X srt2:(2015-2019)"

Sökning: L4X0:0348 467X > (2015-2019)

  • Resultat 1-10 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Appelquist, Ellinor, 1985- (författare)
  • The rotating-disk boundary-layer flow studied through numerical simulations
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis deals with the instabilities of the incompressible boundary-layer flow thatis induced by a disk rotating in otherwise still fluid. The results presented include bothwork in the linear and nonlinear regime and are derived from direct numerical sim-ulations (DNS). Comparisons are made both to theoretical and experimental resultsproviding new insights into the transition route to turbulence. The simulation codeNek5000 has been chosen for the DNS using a spectral-element method (SEM) witha high-order discretization, and the results were obtained through large-scale paral-lel simulations. The known similarity solution of the Navier–Stokes equations for therotating-disk flow, also called the von K ́arm ́an rotating-disk flow, is reproduced by theDNS. With the addition of modelled small simulated roughnesses on the disk surface,convective instabilities appear and data from the linear region in the DNS are anal-ysed and compared with experimental and theoretical data, all corresponding verywell. A theoretical analysis is also presented using a local linear-stability approach,where two stability solvers have been developed based on earlier work. Furthermore,the impulse response of the rotating-disk boundary layer is investigated using DNS.The local response is known to be absolutely unstable and the global response, onthe contrary, is stable if the edge of the disk is assumed to be at radius infinity. Herecomparisons with a finite domain using various boundary conditions give a globalbehaviour that can be both linearly stable and unstable, however always nonlinearlyunstable. The global frequency of the flow is found to be determined by the Rey-nolds number at the confinement of the domain, either by the edge (linear case) or bythe turbulence appearance (nonlinear case). Moreover, secondary instabilities on topof the convective instabilities induced by roughness elements were investigated andfound to be globally unstable. This behaviour agrees well with the experimental flowand acts at a smaller radial distance than the primary global instability. The sharpline corresponding to transition to turbulence seen in experiments of the rotating diskcan thus be explained by the secondary global instability. Finally, turbulence datawere compared with experiments and investigated thoroughly.
  •  
2.
  • Ashwear, Nasseradeen, 1968- (författare)
  • Vibration-based Assessment of Tensegrity Structures
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Vibration structural health monitoring (VHM) uses the vibration properties to evaluate many civil structures during the design steps, building steps and service life.The whole function, expressed by stiffness and frequencies of tensegrity structures are primarily related to the level of pre-stress. The present work investigates the possibilities to use this relation in designing, constructing and evaluating the tensegrity structures.One of the aims of the thesis was to improve the current models for resonance frequency simulation of tensegrities. This has been achieved by introducing the bending behaviour of all components, and by a one-way coupling between the axial force and the stiffness.The environmental temperature effects on vibration properties of tensegrity structures have been also  investigated. Changes in dynamic characteristics due to temperature variations were compared with the changes due to decreasing pre-tension in one of the cables. In general, it is shown that the change in structural frequencies coming from temperature changes could of several magnitude as those from damage.Coinciding natural frequencies and low stiffness are known issues of tensegrity structures. The former can be an obstacle in VHM, while the later normally limits their uses in real engineering applications. It has been shown that the optimum self-stress vector of tensegrity structures can be chosen such that their lowest natural frequency is high, and separated from others.The environmental temperature effects on vibration properties of tensegrity structures were revisited to find a solution such that the natural frequencies of the tensegrity structures are not strongly affected by the changes in the environmental temperature. An asymmetric self-stress vector can be chosen so that the criterion is fulfilled as well as possible. The level of pre-stress can also be regulated to achieve the solution. The last part of this thesis, services as a summary of the work.
  •  
3.
  • Bobke, Alexandra (författare)
  • Simulations of turbulent boundary layers with suction and pressure gradients
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The focus of the present licentiate thesis is on the effect of suction and pressure gradients on turbulent boundary-layer flows, which are investigated separately through performing numerical simulations.The first part aims at assessing history and development effects on adverse pressure-gradient (APG) turbulent boundary layers (TBL). A suitable set-up was developed to study near-equilibrium conditions for a boundary layer developingon a flat plate by setting the free-stream velocity at the top of the domain following a power law. The computational box size and the correct definition of the top-boundary condition were systematically tested. Well-resolved large-eddy simulations were performed to keep computational costs low. By varying the free-stream velocity distribution parameters, e.g. power-law exponent and virtual origin, pressure gradients of different strength and development were obtained. The magnitude of the pressure gradient is quantified in terms of the Clauser pressure-gradient parameter β. The effect of the APG is closely related to its streamwise development, hence, TBLs with non-constant and constant β were investigated. The effect was manifested in the mean flow through a much more pronounced wake region and in the Reynolds stresses through the existence of an outer peak. The terms of the turbulent kinetic energy budgets indicate the influence of the APG on the distribution of the transfer mechanism across the boundary layer. Stronger and more energetic structures were identified in boundary layers with relatively stronger pressure gradients in their development history. Due to the difficulty of determining the boundary-layer thickness in flows with strong pressure gradients or over a curvedsurface, a new method based on the diagnostic-plot concept was introduced to obtain a robust estimation of the edge of a turbulent boundary layer.In the second part, large-eddy simulations were performed on temporally developing turbulent asymptotic suction boundary layers (TASBLs). Findings from previous studies about the effect of suction could be confirmed, e.g. the reduction of the fluctuation levels and Reynolds shear stresses. Furthermore, the importance of the size of the computational domain and the time development were investigated. Both parameters were found to have a large impact on the results even on low-order statistics. While the mean velocity profile collapses in the inner layer irrespective of box size and development time, a wake region occurs for too small box sizes or early development time and vanishes once sufficiently large domains and/or integration times are chosen. The asymptotic state is charactersized by surprisingly thick boundary layers even for moderateReynolds numbers Re (based on free-stream velocity and laminar displacement thickness); for instance, Re = 333 gives rise to a friction Reynolds number Reτ = 2000. Similarly, the flow gives rise to very large structures in the outer region. These findings have important ramifications for experiments, since very large facilities are required to reach the asymptotic state even for low Reynolds numbers.
  •  
4.
  • Boström, Erik (författare)
  • Boundary Conditions for Spectral Simulations of Atmospheric Boundary Layers
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • An atmospheric boundary layer (ABL) is generally a very high Reynolds number boundary layer over a fully rough surface that is influenced by different external forces. Numerical simulations of ABLs are typically demanding, particularly due to the high Reynolds numbers. Large eddy simulation (LES) where the grid filtered Navier--Stokes equations are solved together with a turbulence model for the subgrid-scale motions is the most accurate and widely used technique to date for ABLs. However, high Reynolds numbers, filtered equations and rough surfaces do not support the simple no-slip boundary conditions together with a feasible grid resolution. A paramount part for the performance of an ABL LES simulation therefore lies in the quality of approximate wall boundary conditions, so called wall models.     The vast majority of LES codes used for ABL simulations rely on spatial discretization methods with low order finite difference approximations for the derivatives in the inhomogeneous wall normal direction. Furthermore, the wall boundary conditions are typically chosen in a mesh-dependent, non-local way, relying on the finite differences formulation.     In this thesis we focus on solving the ABL LES equations with a fully (pseudo) spectral Fourier--Chebyshev code. We present how wall boundary conditions can be formulated through Robin boundary conditions and how to implement these in the normal-velocity normal-vorticity formulation that we solve. A new idea of specifying boundary conditions directly in Fourier space where also the turbulence intensity statistics can be controlled is presented and verified. The present results show that the Robin-type formulation is effective at least in near-equilibrium boundary layers.     The code and boundary conditions were tested in both low and high Reynolds number (open and full) channel flows of neutral and stable stratification. Results were validated with both low to moderate Reynolds number DNS statistics as well as with the logarithmic law. Our results indicate great potential for both the the new boundary condition formulation and the specific code implementation. Further analysis of more complex flow situations will show whether the Robin-type formulation will give similarly good results.
  •  
5.
  • Brynjell-Rahkola, Mattias, 1986- (författare)
  • Global stability analysis of three-dimensional boundary layer flows
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis considers the stability and transition of incompressible boundary layers. In particular, the Falkner–Skan–Cooke boundary layer subject to a cylindrical surface roughness, and the Blasius boundary layer with applied localized suction are investigated. These flows are of great importance within the aviation industry, feature complex transition scenarios, and are strongly three-dimensional in nature. Consequently, no assumptions regarding homogeneity in any of the spatial directions are possible, and the stability of the flow is governed by an extensive three-dimensional eigenvalue problem.The stability of these flows is addressed by high-order direct numerical simulations using the spectral element method, in combination with a Krylov subspace projection method. Such techniques target the long-term behavior of the flow and can provide lower limits beyond which transition is unavoidable. The origin of the instabilities, as well as the mechanisms leading to transition in the aforementioned cases are studied and the findings are reported.Additionally, a novel method for computing the optimal forcing of a dynamical system is developed. This type of analysis provides valuable information about the frequencies and structures that cause the largest energy amplification in the system. The method is based on the inverse power method, and is discussed in the context of the one-dimensional Ginzburg–Landau equation and a two-dimensional flow case governed by the Navier–Stokes equations.
  •  
6.
  • Canton, Jacopo, 1989- (författare)
  • Numerical studies on flows with secondary motion
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This work is concerned with the study of flow stability and turbulence control - two old but still open problems of fluid mechanics. The topics are distinct and are (currently) approached from different directions and with different strategies. This thesis reflects this diversity in subject with a difference in geometry and, consequently, flow structure: the first problem is approached in the study of the flow in a toroidal pipe, the second one in an attempt to reduce the drag in a turbulent channel flow.The flow in a toroidal pipe is chosen as it represents the common asymptotic limit between spatially developing and helical pipes. Furthermore, the torus represents the smallest departure from the canonical straight pipe flow, at least for small curvatures. The interest in this geometry is twofold: it allows us to isolate the effect of the curvature on the flow and to approach straight as well as helical pipes. The analysis features a characterisation of the steady solution as a function of curvature and the Reynolds number. The problem of forcing fluid in the pipe is addressed, and the so-called Dean number is shown to be of little use, except for infinitesimally low curvatures. It is found that the flow is modally unstable and undergoes a Hopf bifurcation that leads to a limit cycle. The bifurcation and the corresponding eigenmodes are studied in detail, providing a complete picture of the instability.The second part of the thesis approaches fluid mechanics from a different perspective: the Reynolds number is too high for a deterministic description and the flow is analysed with statistical tools. The objective is to reduce the friction exerted by a turbulent flow on the walls of a channel, and the idea is to employ a control strategy independent of the small, and Reynolds number-dependent, turbulent scales. The method of choice was proposed by Schoppa & Hussain [Phys. Fluids 10:1049-1051 (1998)] and consists in the imposition of streamwise invariant, large-scale vortices. The vortices are re-implemented as a volume force, validated and analysed. Results show that the original method only gave rise to transient drag reduction while the forcing version is capable of sustained drag reduction of up to 18%. An analysis of the method, though, reveals that its effectiveness decreases rapidly as the Reynolds number is increased.
  •  
7.
  • Ferro, Marco (författare)
  • Experimental study on turbulent boundary-layer flows with wall transpiration
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Wall transpiration, in the form of wall-normal suction or blowing through a permeable wall, is a relatively simple and effective technique to control the behaviour of a boundary layer. For its potential applications for laminar-turbulent transition and separation delay (suction) or for turbulent drag reduction and thermal protection (blowing), wall transpiration has over the past decades been the topic of a significant amount of studies. However, as far as the turbulent regime is concerned, fundamental understanding of the phenomena occurring in the boundary layer in presence of wall transpiration is limited and considerable disagreements persist even on the description of basic quantities, such as the mean streamwise velocity, for the rather simplified case of flat-plate boundary-layer flows without pressure gradients.In order to provide new experimental data on suction and blowing boundary layers, an experimental apparatus was designed and brought into operation. The perforated region spans the whole 1.2 m of the test-section width and with its streamwise extent of 6.5 m is significantly longer than previous studies, allowing for a better investigation of the spatial development of the boundary layer. The quality of the experimental setup and measurement procedures was verified with extensive testing, including benchmarking against previous results on a canonical zero-pressure-gradient turbulent boundary layer (ZPG TBL) and on a laminar asymptotic suction boundary layer.The present experimental results on ZPG turbulent suction boundary layers show that it is possible to experimentally realize a turbulent asymptotic suction boundary layer (TASBL) where the boundary layer mean-velocity profile becomes independent of the streamwise location, so that the suction rate constitutes the only control parameter. TASBLs show a mean-velocity profile with a large logarithmic region and without the existence of a clear wake region. If outer scaling is adopted, using the free-stream velocity and the boundary layer thickness (δ99) as characteristic velocity and length scale respectively, the logarithmic region is described by a slope Ao=0.064 and an intercept Bo=0.994, independently from the suction rate (Γ). Relaminarization of an initially turbulent boundary layer is observed for Γ>3.70×10−3. Wall suction is responsible for a strong damping of the velocity fluctuations, with a decrease of the near-wall peak of the velocity-variance profile ranging from 50% to 65% when compared to a canonical ZPG TBL at comparable Reτ. This decrease in the turbulent activity appears to be explained by an increased stability of the near-wall streaks.Measurements on ZPG blowing boundary layers were conducted for blowing rates ranging between 0.1% and 0.37% of the free-stream velocity and cover the range of momentum thickness Reynolds number 10000
  •  
8.
  • Imani Jajarmi, Ramin (författare)
  • Acoustic separation and electrostatic sampling of submicron particles suspended in air
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • We investigate experimentally the effects of acoustic forces on submicron aerosol in a channel flow. This technique can potentially overcome some of the limitations of conventional separation systems and provide advanced manipulation capabilities such as sorting according to size or density. The theoretical framework for acoustophoresis at such small length scales where molecular effects are expected to be significant is still incomplete and in need of experimental validation. The main objectives of this thesis are to identify the physical limitations and capabilities of acoustophoretic manipulation for submicron aerosol particles.Two sets of experiments were carried out: first, qualitative results revealed that acoustic manipulation is possible for submicron particles in air and that the acoustic force follows the trend expected by theoretical models developed for particles in inviscid fluids. The acoustic force on submicron particles was estimated in a second set of measurements performed with quantitative diagnostic tools. Comparison of these results with available theoretical models for the acoustic radiation forces demonstrates that for such small particles additional forces have to be considered. At submicron length scales, the magnitude of the forces observed is orders of magnitude higher than the predictions from the inviscid theory.One potential application for acoustophoresis is specifically investigated in this thesis: assist electrostatic precipitation (ESP) samplers to target very small aerosols, such as those carrying airborne viruses. To identify the shortcomings of ESP samplers that acoustophoresis should overcome, two ESP designs have been investigated to quantify capture efficiency as a function of the particle size and of the air velocity in a wind tunnel. The results reveal that both designs have limitations when it comes to sampling submicron aerosol particles. When exposed to polydispersed suspensions they behave as low-pass filters.
  •  
9.
  • Imani Jajarmi, Ramin, 1987- (författare)
  • Acoustic separation of submicron particles in gaseous flows
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The separation of submicron particles suspended in gaseous flows is a problem of great importance and is the subject of sustained research efforts. This is motivated by several challenges presented by modern science and technology requiring high separation efficiencies for submicron particles.Continuous acoustic particles separation is a novel technique based on the acoustophoresis phenomenon, in which a particle within an acoustic field is manipulated using acoustic forces on its surface. This technique has the potential to overcome some of the limitations of common techniques for the separation of submicron particles, as well as performing advanced tasks such as sorting particles according to their size or density.In this thesis, the separation of submicron solid particles suspended in air is investigated experimentally, with a focus on the effect of key design parameters (acoustic, flow, geometry) on the efficiency of the process. A simple method based on laser light scattering was also used to provide qualitative information on the particle number density as a function of position in the channel. This technique allowed to quickly investigate the effect of a wide range of parameters on the acoustic separation efficiency including the pressure amplitude, the frequency of the standing wave, the average flow velocity and the parallelism of the channel walls.   The results demonstrate conclusively that acoustic manipulation is possible for submicron particles and that the acoustic force scales following the trends expected from theoretical models developed in the continuum regime. From the size of the particles used it however follows that the observed separation is the result of transition regime acoustophoresis, with a Knudsen number on the order of 0.2.
  •  
10.
  • Kékesi, Tímea, 1986- (författare)
  • Scenarios of drop deformation and breakup in sprays
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Sprays are used in a wide range of engineering applications, in the food and pharmaceutical industry in order to produce certain materials in the desired powder-form, or in internal combustion engines where liquid fuel is injected and atomized in order to obtain the required air/fuel mixture. The optimization of such processes requires the detailed understanding of the breakup of liquid structures.In this work, we focus on the secondary breakup of medium size liquid drops that are the result of primary breakup at earlier stages of the breakup process, and that are subject to further breakup. The fragmentation of such drops is determined by the competing disruptive (pressure and viscous) and cohesive (surface tension) forces. In order to gain a deeper understanding on the dynamics of the deformation and breakup of such drops, numerical simulations on single drops in uniform and shear flows, and on dual drops in uniform flows are performed employing a Volume of Fluid method. The studied parameter range corresponds to an intermediate Weber number of 20, sufficiently high so that breakup occurs, but much lower than the limit for catastrophic breakup, and a range of Reynolds numbers covering the steady wake regime for liquid drops, Re = 20-200. In order to account for liquids in various applications, a set of different density and viscosity ratios are considered, ρ*=20-80, and μ*=0.5-50 respectively.Single drop simulations show that depending on the Reynolds number and density and viscosity ratios, various breakup modes besides classical bag and shear breakup may be observed at a constant Weber number. The characteristics of the deformation process and the time required for breakup are considerably different for these modes; furthermore, both are significantly altered by velocity gradients in the flow. Dual drop simulations show that the relative position of the two drops, in addition to the Reynolds number and density and viscosity ratios, plays a crucial role in determining the interaction scenario. It is found that the behaviour of drops in tandem may be predicted based on data obtained for single drops: the breakup time and the length of the wake behind the drop. The region where collision is most likely to occur is identified as a two diameters wide and eight diameters long streak, however, weaker forms of interaction may occur up to twenty diameters behind the drop. Results presented in this thesis may be applied to formulate enhanced breakup models regarding the deformation, breakup, and interaction of liquid drops employed in spray simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 36
Typ av publikation
doktorsavhandling (20)
licentiatavhandling (13)
rapport (3)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (36)
Författare/redaktör
Schlatter, Philipp (4)
Henningson, Dan (3)
Åbom, Mats, 1954- (2)
Hanifi, Ardeshir (2)
Eriksson, Anders, Pr ... (2)
Henningson, Dan, Pro ... (2)
visa fler...
Eriksson, Anders (1)
Brandt, Luca (1)
Henningson, Dan S. (1)
Karlsson, Mikael (1)
Wiklund, Martin (1)
Fuchs, Laszlo (1)
Engvall, Klas (1)
Engvall, Klas, Profe ... (1)
Amberg, Gustav, Prof ... (1)
Fuchs, Laszlo, Profe ... (1)
Alfredsson, Henrik (1)
Alfredsson, P. Henri ... (1)
Örlü, Ramis (1)
Lingwood, Rebecca (1)
Lashgari, Iman (1)
Altimira, Mireia (1)
Prahl Wittberg, Lisa ... (1)
Duwig, Christophe (1)
Appelquist, Ellinor, ... (1)
Schlatter, Philipp, ... (1)
Schlatter, Philipp, ... (1)
Pier, Benoît (1)
Ashwear, Nasseradeen ... (1)
Anders, Eriksson, pr ... (1)
Abrahamsson, Thomas, ... (1)
Nilsson, Karl (1)
Rosén, Tomas, 1985- (1)
Swarén, Mikael, 1980 ... (1)
Söderberg, Daniel, D ... (1)
Mihaescu, Mihai, Ass ... (1)
Prahl Wittberg, Lisa ... (1)
Nilsson, Håkan, Prof ... (1)
Bobke, Alexandra (1)
Gungor, Ayse Gul (1)
Boström, Erik (1)
Schlatter, Philipp, ... (1)
Geurts, Bernard J., ... (1)
Hawkes, Jeremy (1)
Brynjell-Rahkola, Ma ... (1)
Hanifi, Ardeshir, Do ... (1)
Sherwin, Spencer, Pr ... (1)
Shahriari, Nima, 198 ... (1)
Trip, Renzo (1)
Canton, Jacopo, 1989 ... (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (36)
Högskolan Dalarna (1)
Språk
Engelska (36)
Forskningsämne (UKÄ/SCB)
Teknik (33)
Naturvetenskap (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy