SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L4X0:1653 7610 srt2:(2012)"

Sökning: L4X0:1653 7610 > (2012)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buono, Benedetto (författare)
  • Simulation and Characterization of Silicon Carbide Power Bipolar Junction Transistors
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The superior characteristics of silicon carbide, compared with silicon, have suggested considering this material for the next generation of power semiconductor devices. Among the different power switches, the bipolar junction transistor (BJT) can provide a very low forward voltage drop, a high current capability and a fast switching speed. However, in order to compete on the market, it is crucial to a have high current gain and a breakdown voltage close to ideal. Moreover, the absence of conductivity modulation and long-term stability has to be solved. In this thesis, these topics are investigated comparing simulations and measurements. Initially, an efficient etched JTE has been simulated and fabricated. In agreement with the simulations, the fabricated diodes exhibit the highest BV of around 4.3 kV when a two-zone JTE is implemented. Furthermore, the simulations and measurements demonstrate a good agreement between the electric field distribution inside the device and the optical luminescence measured at breakdown. Additionally, an accurate model to simulate the forward characteristics of 4H-SiC BJTs is presented. In order to validate the model, the simulated current gains are compared with measurements at different temperatures and different base-emitter geometries. Moreover, the simulations and measurements of the on-resistance are compared at different base currents and different temperatures. This comparison, coupled with a detailed analysis of the carrier concentration inside the BJT, indicates that internal forward biasing of the base-collector junction limits the BJT to operate at high current density and low forward voltage drop simultaneously. In agreement with the measurements, a design with a highly-doped extrinsic base is proposed to alleviate this problem. In addition to the static characteristics, the comparison of measured and simulated switching waveforms demonstrates that the SiC BJT can provide fast switching speed when it acts as a unipolar device. This is crucial to have low power losses during transient. Finally, the long-term stability is investigated. It is observed that the electrical stress of the base-emitter diode produces current gain degradation; however, the degradation mechanisms are still unclear. In fact, the analysis of the measured Gummel plot suggests that the reduction of the carrier lifetime in the base-emitter region might be only one of the causes of this degradation. In addition, the current gain degradation due to ionizing radiation is investigated comparing the simulations and measurements. The simulations suggest that the creation of positive charge in the passivation layer can increase the base current; this increase is also observed in the electrical measurements.
  •  
2.
  • Dong, Lin, 1983- (författare)
  • Optical Properties of Nanoparticles in Composite Materials
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Nanoparticles are synthetic structures with dimension from 1 to 100 nanometers and are various in types. Some favorable properties peculiar to the nanoparticles (generally owing to size effects) make them prevailing and beneficial for applications in different scientific and engineering fields. A large portion of these properties find their connection to optics and photonics. In the context of optics, the thesis is devoted to study of two specific categories of nanoparticles, gold nanoparticles and CdSe-CdS core-shell quantum dots, aiming at investigating the influence and potential of the particles in applications of lasing and medical diagnosis/treatment.Gold nanoparticles have been widely exploited in radiative decay engineering to achieve fluorescence enhancement or quenching of fluorophores, with the help of a localized surface plasmon resonance band in visible range. As the technique is recently introduced to lasing applications, the influence of the gold nanoparticles on the photostability of the gain medium needs more attention. In this work, the effect of size and concentration of gold nanoparticles on altering the photostability of aqueous solution of Rhodamine 6G in lasing process is demonstrated and analyzed. Energy transfer and nanoparticle induced heat are found to be responsible for the acceleration of photobleaching. It is shown that coating the gold nanoparticles with a 15 nm thick silica layer can effectively diminish the photostability degradation of the gain medium.Gold nanorods are popular for in vivo diagnostic and therapeutic applications due to their strong absorption of near-infrared light. A novel type of multimodal nanoparticles based on gold nanorods is synthesized here and optically characterized. The coating of silica and gadolinium oxide carbonate hydrate renders the nanoparticles superior performance as MRI/CT contrast agents than commercially available products. Meanwhile, the precise temperature control of bio-tissues using the particles under laser irradiation makes them promising for photothermal treatment of cancer cells.The thesis also addresses several open questions with respect to CdSe-CdS core-shell quantum dots. A numerical model is built to study the spatial separation of electrons and holes in the dots with different core/shell sizes. QDs in different geometrical shapes are investigated. It is found that the spherical core-shell QDs can be flexibly tuned between the type-I and the type-II regime by varying the dimensions of the core and the shell. The feature is confirmed by time-resolved photoluminescence measurements, in which the carrier recombinations from different spatial paths can be distinguished. A sign of amplified spontaneous emission is observed with spherical dots of an appropriate combination of core radius and shell thickness, indicating the potential of the QDs for lasing applications.
  •  
3.
  • Iyer, Srinivasan, 1984- (författare)
  • Effects of surface plasmons in subwavelength metallic structures
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The study of optical phenomena related to the strong electromagnetic response of noble metals (silver (Ag) and gold (Au) being most popular) over the last couple of decades has led to the emergence of a fast growing research area called plasmonics named after 'surface plasmons' which are electron density waves that propagate along the interface of a metal and a dielectric medium. Surface plasmons are formed by the coupling of light to the electrons on the metal surface subject to the fulfillment of certain physical conditions and they are bound to the metal surface. Depending on whether the metallic medium is a continuous film or a structure having dimensions less than or comparable to the wavelength of the exciting light, propagating or localized surface plasmons can be excited. The structure can be either a hole or an arbitrary pattern in a metal film, or a metallic particle. An array of subwavelength structures can behave as an effective homogeneous medium to incident light and this is the basis of a new class of media known as metamaterials. Metallic metamaterials enable one to engineer the electromagnetic response to  incident light and provide unconventional optical properties like negative refractive index as one prominent example. Metamaterials exhibiting negative index (also called negative index materials (NIMs)) open the door for super resolution imaging  and development of invisibility cloaks. However, the only problem affecting the utilization of plasmonic media to their fullest potential is the intrinsic loss of the metal, and it becomes a major issue especially at visible-near infrared (NIR) frequencies.The frequency of the surface plasmon is the same as that of the exciting light but its wavelength could be as short as that of X-rays. This property allows light of a given optical frequency to be conned into very small volumes via subwave lengthmetallic structures, that can be used to develop ecient sensors, solar cells, antennas and ultrasensitive molecular detectors to name a few applications. Also, interaction of surface plasmons excited in two or more metallic subwavelength structures in close proximity inuences the far-eld optical properties of the overall coupled system. Some eects of plasmonic interaction in certain coupled particles include polarization conversion, optical activity and transmission spectra mimicking electromagnetically-induced transparency (EIT) as observed in gas based atomicsy stems.In this thesis, we mainly focus on the optical properties of square arrays of certain plasmonic structures popularly researched in the last decade. The structures considered are as follows: (1) subwavelength holes of a composite hole-shape providing superior near-eld enhancement such as two intersecting circles (called' double hole') in an optically thick Au/Ag lm, (2) double layer shnets, (3) subwavelength U-shaped particles and (4) rectangular bars. The entire work is based on electromagnetic simulations using time and frequency domain methods.Au/Ag lms with periodic subwavelength holes provide extraordinarily high transmission of light at certain wavelengths much larger than the dimension of the perforations or holes. The spectral positions of the maxima depend on the shape of the hole and the intra-hole medium, thereby making such lms function as a refractive index sensor in the transmission mode. The sensing performance of the double-hole geometry is analyzed in detail and compared to rectangular holes.Fishnet metamaterials are highly preferred when it comes to constructing a NIM at optical frequencies. A shnet design that theoretically oers a negative refractive index with least losses at telecommunication wavelengths (1.4 1.5 microns) is presented.U-shaped subwavelength metallic particles, in particular single-slit split-ring resonators (SSRRs), provide a large negative response to the magnetic eld of light at a specic resonance frequency. The spectral positions of the structural resonances of the U-shaped particle can be found from its array far field transmission spectrum at normal incidence. An effort is made to clarify our understanding of these resonances with the help of localized surface plasmon modes excited in the overall particle. From an application point of view, it is found that a planar square array of SSRRs eectively functions as an optical half-wave waveplate at the main resonance frequency by creating a polarization in transmission that is orthogonal to that of incident light. A similar waveplate eect can be obtained purely by exploiting the near-eld interaction of dierently oriented neighbouring SSRRs. The physical reasons behind polarization conversion in dierent SSRR-array systems are discussed.A rectangular metallic bar having its dipolar resonance in the visible-NIR is called a nanoantenna, owing to its physical length in the order of nanometers. The excitation of localized surface plasmons, metal dispersion and the geometry of the rectangular nanoantenna make an analytical estimation of the physical length of the antenna from the desired dipolar resonance dicult. A practical map of simulated resonance values corresponding to a variation in geometrical parameters of Au bar is presented. A square array of a coupled plasmonic system comprising of three nanoantennas provides a net transmission response that mimicks the EIT effect. The high transmission spectral window possesses a peculiar dispersion profile that enables light with frequencies in that region to be slowed down. Two popular designs of such plasmonic EIT systems are numerically characterized and compared.
  •  
4.
  • Jirattigalachote, Amornrat, 1982- (författare)
  • Provisioning Strategies for Transparent Optical Networks Considering Transmission Quality, Security, and Energy Efficiency
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The continuous growth of traffic demand driven by the brisk increase in number of Internet users and emerging online services creates new challenges for communication networks. The latest advances in Wavelength Division Multiplexing (WDM) technology make it possible to build Transparent Optical Networks (TONs) which are expected to be able to satisfy this rapidly growing capacity demand. Moreover, with the ability of TONs to transparently carry the optical signal from source to destination, electronic processing of the tremendous amount of data can be avoided and optical-to-electrical-to-optical (O/E/O) conversion at intermediate nodes can be eliminated. Consequently, transparent WDM networks consume relatively low power, compared to their electronic-based IP network counterpart. Furthermore, TONs bring also additional benefits in terms of bit rate, signal format, and protocol transparency. However, the absence of O/E/O processing at intermediate nodes in TONs has also some drawbacks. Without regeneration, the quality of the optical signal transmitted from a source to a destination might be degraded due to the effect of physical-layer impairments induced by the transmission through optical fibers and network components. For this reason, routing approaches specifically tailored to account for the effect of physical-layer impairments are needed to avoid setting up connections that don’t satisfy required signal quality at the receiver. Transparency also makes TONs highly vulnerable to deliberate physical-layer attacks. Malicious attacking signals can cause a severe impact on the traffic and for this reason proactive mechanisms, e.g., network design strategies, able to limit their effect are required. Finally, even though energy consumption of transparent WDM networks is lower than in the case of networks processing the traffic at the nodes in the electronic domain, they have the potential to consume even less power. This can be accomplished by targeting the inefficiencies of the current provisioning strategies applied in WDM networks.The work in this thesis addresses the three important aspects mentioned above. In particular, this thesis focuses on routing and wavelength assignment (RWA) strategies specifically devised to target: (i) the lightpath transmission quality, (ii) the network security (i.e., in terms of vulnerability to physical-layer attacks), and (iii) the reduction of the network energy consumption. Our contributions are summarized below.A number of Impairment Constraint Based Routing (ICBR) algorithms have been proposed in the literature to consider physical-layer impairments during the connection provisioning phase. Their objective is to prevent the selection of optical connections (referred to as lightpaths) with poor signal quality. These ICBR approaches always assign each connection request the least impaired lightpath and support only a single threshold of transmission quality, used for all connection requests. However, next generation networks are expected to support a variety of services with disparate requirements for transmission quality. To address this issue, in this thesis we propose an ICBR algorithm supporting differentiation of services at the Bit Error Rate (BER) level, referred to as ICBR-Diff. Our approach takes into account the effect of physical-layer impairments during the connection provisioning phase where various BER thresholds are considered for accepting/blocking connection requests, depending on the signal quality requirements of the connection requests. We tested the proposed ICBR-Diff approach in different network scenarios, including also a fiber heterogeneity. It is shown that it can achieve a significant improvement of network performance in terms of connection blocking, compared to previously published non-differentiated RWA and ICBR algorithms. Another important challenge to be considered in TONs is their vulnerability to physical-layer attacks. Deliberate attacking signals, e.g., high-power jamming, can cause severe service disruption or even service denial, due to their ability to propagate in the network. Detecting and locating the source of such attacks is difficult, since monitoring must be done in the optical domain, and it is also very expensive. Several attack-aware RWA algorithms have been proposed in the literature to proactively reduce the disruption caused by high-power jamming attacks. However, even with attack-aware network planning mechanisms, the uncontrollable propagation of the attack still remains an issue. To address this problem, we propose the use of power equalizers inside the network nodes in order to limit the propagation of high-power jamming attacks. Because of the high cost of such equipment, we develop a series of heuristics (incl. Greedy Randomized Adaptive Search Procedure (GRASP)) aiming at minimizing the number of power equalizers needed to reduce the network attack vulnerability to a desired level by optimizing the location of the equalizers. Our simulation results show that the equalizer placement obtained by the proposed GRASP approach allows for 50% reduction of the sites with the power equalizers while offering the same level of attack propagation limitation as it is possible to achieve with all nodes having this additional equipment installed. In turn, this potentially yields a significant cost saving.   Energy consumption in TONs has been the target of several studies focusing on the energy-aware and survivable network design problem for both dedicated and shared path protection. However, survivability and energy efficiency in a dynamic provisioning scenario has not been addressed. To fill this gap, in this thesis we focus on the power consumption of survivable WDM network with dynamically provisioned 1:1 dedicated path protected connections. We first investigate the potential energy savings that are achievable by setting all unused protection resources into a lower-power, stand-by state (or sleep mode) during normal network operations. It is shown that in this way the network power consumption can be significantly reduced. Thus, to optimize the energy savings, we propose and evaluate a series of energy-efficient strategies, specifically tailored around the sleep mode functionality. The performance evaluation results reveal the existence of a trade-off between energy saving and connection blocking. Nonetheless, they also show that with the right provisioning strategy it is possible to save a considerable amount of energy with a negligible impact on the connection blocking probability.In order to evaluate the performance of our proposed ICBR-Diff and energy-aware RWA algorithms, we develop two custom-made discrete-event simulators. In addition, the Matlab program of GRASP approach for power equalization placement problem is implemented.
  •  
5.
  • Lanni, Luigia, 1985- (författare)
  • Silicon Carbide Bipolar Integrated Circuits for High Temperature Applications
  • 2012
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Silicon carbide (SiC) is a semiconductor that provides significant advantages for high-power and high-temperature applications thanks to its wide bandgap, which is several times larger than silicon. The resulting high breakdown field, high thermal conductivity and high intrinsic temperature (well above 600 °C) allow high temperature operation of SiC devices and relaxed cooling requirements. In particular, SiC bipolar junction transistors (BJTs) are suitable for high temperature integrated circuits (ICs), due to the absence of a gate oxide. This work focuses on design, fabrication and characterization of the first 4H-SiC integrated circuits realized at KTH. It deals with basic bipolar ICs suitable for high temperature and low voltage applications. Operation up to 300 °C of low-voltage 4H-SiC NPN bipolar transistors and digital integrated circuits based on emitter coupled logic (ECL) has been demonstrated. In the temperature range 27 - 300 °C stable noise margins of about 1 V have been achieved for a 2-input OR-NOR gate operated on -15 V supply voltage, and an oscillation frequency of about 2 MHz has been observed for a 3-stage ring oscillator. The possibility of realizing PNP transistors and passive devices in the same process technology has also been investigated.
  •  
6.
  • Ma, Ying, 1983- (författare)
  • Ceria-based Nanostructured Materials for Low-Temperature Solid Oxide Fuel Cells
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • As one of the most efficient and environmentally benign energy conversion devices, solid oxide fuel cells (SOFC) have attracted much attention in recent years. Conventional SOFC with yttria-stabilized zirconia as electrolyte require high operation temperature (800-1000 °C), which causes significant problems like material degradation, as well as other technological complications and economic barrier for wider applications. Therefore, there is a broad interest in reducing the operation temperature of SOFCs. One of the most promising ways to develop low-temperature SOFCs (LTSOFC) is to explore effective materials for each component with improved properties. So in this thesis, we are aiming to design and fabricate ceria-based nanocomposite materials for electrolyte and electrodes of LTSOFC by a novel nanocomposite approach. In the first part of the thesis, novel core-shell doped ceria/Na2CO3 nanocomposite was fabricated and investigated as electrolytes materials of LTSOFC. Two types of doped ceria were selected as the main phase for nanocomposite: samarium doped ceria (SDC) and calcium doped ceria (CDC). The core-shell SDC/Na2CO3 nanocomposite particles are smaller than 100 nm with amorphous Na2CO3 shell of 4~6 nm in thickness. The ionic conductivity of nanocomposite electrolytes were investigated by EIS and four-probe d.c. method, which demonstrated much enhanced ionic conductivities compared to the single phase oxides. The thermal stability of such nanocomposite has also been investigated based on XRD, BET, SEM and TGA characterization after annealing samples at various temperatures. Such nanocomposite was applied in LTSOFCs with an excellent power density of 0.8 Wcm-2 at 550 °C. The high performances together with notable thermal stability prove the doped ceria/Na2CO3 nanocomposite as a potential electrolyte material for long-term LTSOFCs. In the second part of the thesis, a novel template-, surfactant-free chemical synthetic route has been successfully developed for the controlled synthesis of hierarchically structured CeO2 with nanowires and mesoporous microspheres morphologies. The new synthetic route was designed by utilizing the chelate formation between cerium ion and various carboxylates forms of citric acid. Then, hierarchically structured cerium oxide with morphologies of nanowires and mesoporous microspheres can be obtained by thermal decomposition of the two kinds of precursors. Moreover, by doping with desired elements, SDC nanowires and SDC-CuO mesoporous microspheres were prepared and used for electrolyte and anode materials, respectively, based on their unique properties depending on their morphologies. When SDC nanowires/Na2CO3 composite were applied as electrolyte for single SOFC, and it exhibited maximum power density of 522 mWcm-2 at 600 °C, which is much better than the state-of-the-art SOFCs using doped ceria as electrolytes. Besides, the mesoporous CuO-SDC composite anode was synthesized by our microwave-assisted method, which shows good phase homogeneity of both SDC and CuO. When it was applied for fuel cells, the cell had better performance than conventional CuO-SDC anode prepared by solid state method. The whole work of this thesis aims to provide a new methodology for the entire SOFC community. It is notable that our work has attracted considerable attention after publication of several attached papers. The results in this thesis may benefit the development of LTSOFC and expand the related research to a new horizon.
  •  
7.
  •  
8.
  • Mohseni Armaki, Seyed Majid, 1978- (författare)
  • Spin valves and spin-torque oscillators with perpendicualr magnetic anisotropy
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Researches in spintronics, especially those remarkably classified in the current induced spin-transfer torque (STT) framework, circumvent challenges with different materials and geometries. Perpendicular magnetic anisotropy (PMA) materials are showing capability of holding promise to be employed in STT based spintronics elements, e.g. spin-torque oscillators (STOs), STT-magnetoresistive random access memories (STT-MRAMs) and current induced domain wall motion elements.This dissertation presents experimental investigations into developing sputter deposited Co/Ni multilayers (MLs) with PMA and employs these materials in nano-contact STOs (NC-STOs) based on giant magnetoresistance (GMR) effect and in pseudo-spin-valve (PSV) structures. The magnetostatic stray field coupling plays an important role in perpendicular PSVs. The temperature dependent coupling mechanism recommends that this coupling can be tailored, by i) the saturation magnetization and coercivity of the individual layers, ii) the coercivity difference in layers, and iii) the GMR spacer thickness, to get a well decoupled and distinguishable switching response. Moreover, this thesis focused on the implementation and detailed characterization of NC-STOs with strong PMA Co/Ni ML free layers and in-plane Co reference layers as orthogonal (Ortho) magnetic geometry in so-called Ortho-NC-STOs. The primary target of reaching record high STO frequencies, 12 GHz, at close to zero field, 0.02 Tesla, was achieved. However, in large external fields, >0.4 Tesla, an entirely new magnetodynamic object, a “magnetic droplet”, theoretically predicted in 1977, was discovered experimentally. Detailed experiments, combined with micromagnetic simulations, demonstrate the formation of a magnetic droplet with a partially reversed magnetization direction underneath the NC, and a zone of large amplitude precession in a region bounding the reversed magnetization. The magnetic droplet exhibits a very rich dynamics, including i) auto-modulation as a combine of droplet frequency with a slow time evolution (few GHz) of un-centering the droplet mode under the NC, ii) droplet breathing as reversible deformation of droplet mode with ½ droplet frequency. All observation of droplet opens a new mechanism of excitation for future fundamental studies as well as experiments especially for domain wall electronics and nano-scopic magnetism.
  •  
9.
  • Shahid, Robina (författare)
  • Green Chemical Synthesis of II-VI Semiconductor Quantum Dots
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Nanotechnology is the science and technology of manipulating materials at atomic and molecular scale with properties different from bulk. Semiconductor QDs are important class of nanomaterials with unique physical and chemical properties owing to the quantum confinement effect. Size dependent optical properties make research on semiconductor QDs more attractive in the field of nanotechnology. Semiconductor QDs are usually composed of combination of elements from groups II–VI, III–V, or IV–VI of the periodic table. Group II-VI semiconductor QDs (ZnS, ZnSe, ZnO, CdSe, CdS) are most extensively studied systems, having bandgap which can be engineered through the variation of the material composition and size. Most common QDs are made of CdE (E=S, Se, Te) which are toxic. Recent environmental regulations restrict the use of toxic metals and therefore QDs containing nontoxic metals such as Zn are of great importance.The chemical synthesis of QDs involves different methods. Usually high temperature thermal decomposition of organometallic compounds in high boiling point organic solvents is used which needs long reaction time and involves complex synthesis procedures. New simpler and efficient synthetic routes with alternative solvents are required. Recently the synthesis of non-toxic QDs using green chemical routes is a promising approach receiving increasing attention.The aim of this Thesis is to develop novel routes for synthesis of semiconductor QDs employing green nanomaterial synthesis techniques. Therefore, in this work, we developed different green chemical routes mainly for the synthesis Zn-based QDs. Low temperature synthesis routes were developed for the synthesis of ZnS and ZnO QDs. Microwave irradiation was also used as efficient heating source which creates numerous nucleation sites in the solution, leading to the formation of homogeneous nanoparticles with small size and narrow size distribution. Different polar solvents with high MW absorption were used for synthesis of ZnS QDs. We also introduced ionic liquids as solvents in the synthesis of ZnS QDs using microwave heating. ILs are excellent reaction media for absorbing microwaves and are recognized as ‘green’ alternative to volatile and toxic organic solvents.For ZnS systems, the QDs produced by different methods were less than 5 nm in size as characterized by high-resolution transmission electron microscopy (HR-TEM). Selected area electron diffraction (SAED) patterns revealed that ZnS QDs synthesized by low temperature synthesis technique using conventional heating are of cubic crystalline phase while the QDs synthesized by using MW heating are of wurtzite phase. The optical properties were investigated by UV-Vis absorption spectrum and show a blue shift in absorption as compared to bulk due to quantum confinement effect. The photoluminescence (PL) spectra of ZnS QDs show different defect states related emission peaks and depend on different synthesis methods, high bandedge related emission is observed for ZnS QDs synthesized by using ionic liquids. ZnO QDs synthesized by low temperature route were found to be less than 4 nm in size and also show a blue shift in their absorption. The PL spectrum show bandedge related emission which is blue shifted compared with bulk with no emission originating from surface defect levels. The results show that QDs are of high crystalline quality with narrow size distribution. A comparative study of using conventional and MW heating in the synthesis of CdSe QDs was performed. The reactions involving microwave heating showed enhanced rates and higher yields.The developed methods involve all principles for green nanomaterials synthesis i.e. design of safer nanomaterials, reduced environmental impact, waste reduction, process safety, materials and energy efficiency.
  •  
10.
  • Sugunan, Abhilash, 1980- (författare)
  • Fabrication and Photoelectrochemical Applications of II-VI Semiconductor Nanomaterials
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this work we investigated fabrication of semiconductor nanomaterials and evaluated their potential for photo-chemical and photovoltaic applications. We investigated different II-VI semiconductor nanomaterial systems; (i) ZnO oriented nanowire arrays non-epitaxially grown from a substrate; and (ii) colloidal CdE (E=Te,Se,S) quantum structures synthesized by solution-based thermal decomposition of organo-metallic precursors. We have studied the synthesis of vertically aligned ZnO nanowire arrays (NWA), by a wet chemical process on various substrates. We have extended this method wherein nanofibers of poly-L-lactide act as a substrate for the radially oriented growth of ZnO nanowires. By combining the large surface area and the flexibility of the PLLA-ZnO hierarchical nanostructure we have shown the proof-of-principle demonstration of a ‘continuous-flow’ water treatment system to decompose known organic pollutants in water, as well as render common waterborne bacteria non-viable. We have studied synthesis of colloidal quantum dots (QD), and show size, morphology and composition tailored nanocrystals for CdE (E=S, Se, Te) compositions. We have studied the influence of crystal growth habits of the nanocrtsyals on the final morphology. Furthermore we have synthesized core-shell, CdSe-CdS QDs with spherical and tetrahedral morphologies by varying the reaction conditions. We show that these core-shell quantum dots show quasi-type II characteristics, and demonstrate with I-V measurements, the spatial localization of the charge carriers in these hetero-nanocrystals. For this purpose, we developed hybrid materials consisting of the core-shell quantum dots with electron acceptors (ZnO nanowires) and hole acceptors (polymeric P3HT nanofibers). In addition we have also compared the synthesis reaction when carried out with conventional heating and microwave-mediated heating. We find that the reaction is enhanced, and the yield is qualitatively better when using microwave induced heating.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
Typ av publikation
doktorsavhandling (12)
licentiatavhandling (2)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (14)
Författare/redaktör
Muhammed, Mamoun, Pr ... (3)
Östling, Mikael, Pro ... (1)
Sugunan, Abhilash, 1 ... (1)
Shahid, Robina (1)
Åkerman, Johan (1)
Dutta, Joydeep, Prof ... (1)
visa fler...
Domeij, Martin (1)
Westin, Gunnar, Prof ... (1)
Wosinska, Lena, Prof ... (1)
Buono, Benedetto (1)
Malm, Gunnar, Univer ... (1)
Frey, Lothar, Profes ... (1)
Hallén, Anders, Prof ... (1)
Dong, Lin, 1983- (1)
Popov, Sergei, Assoc ... (1)
Friberg, Ari, Prof. (1)
Scharf, Toralf, Asso ... (1)
Zetterling, Carl-Mik ... (1)
Boschloo, Gerrit, As ... (1)
Zhu, Bin, Docent (1)
Iyer, Srinivasan, 19 ... (1)
Friberg, Ari T., Pro ... (1)
Mortensen, N. Asger, ... (1)
Xu, Tianhua, 1984- (1)
Jirattigalachote, Am ... (1)
Monti, Paolo, Assist ... (1)
Mukherjee, Biswanath ... (1)
Rodriguez, Saul, Dr. (1)
Lanni, Luigia, 1985- (1)
Rorsman, Niklas, Doc ... (1)
Jacobsen, Gunnar, Pr ... (1)
Usman, Muhammad, 198 ... (1)
Ma, Ying, 1983- (1)
Abdel-Karim, Randa, ... (1)
Yar, Mazher Ahmed (1)
Manolopoulos, Vasile ... (1)
Elnaggar, Mohammed I ... (1)
Rusu, Ana, Assoc. Pr ... (1)
Gehrmann, Christian, ... (1)
Mohseni Armaki, Seye ... (1)
Kent, Andrew, Profes ... (1)
Käll, Per-Olov, Prof ... (1)
Toprak, Muhammet, As ... (1)
Muhammed, Mamoun, Pr ... (1)
Sveinbjörnsson, Eina ... (1)
Li, Jie, Doctor (1)
Popov, Sergei, Assoc ... (1)
Savory, Seb, Associa ... (1)
Ye, Fei, 1979- (1)
Muhammed, Mamounm, P ... (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (14)
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Teknik (11)
Naturvetenskap (3)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy