SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0003 004X OR L773:1945 3027 srt2:(2015-2019)"

Sökning: L773:0003 004X OR L773:1945 3027 > (2015-2019)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Stefan S., et al. (författare)
  • Mineralogy, paragenesis, and mineral chemistry of REEs in the Olserum-Djupedal REE-phosphate mineralization, SE Sweden
  • 2018
  • Ingår i: American Mineralogist. - : MINERALOGICAL SOC AMER. - 0003-004X .- 1945-3027. ; 103:1, s. 125-142
  • Tidskriftsartikel (refereegranskat)abstract
    • The rapidly growing use of rare earth elements and yttrium (REE) in modern-day technologies, not least within the fields of green and carbon-free energy applications, requires exploitation of new REE deposits and deposit types. In this perspective, it is vital to develop a fundamental understanding of the behavior of REE in natural hydrothermal systems and the formation of hydrothermal REE deposits. In this study, we establish a mineralogical, textural, and mineral-chemical framework for a new type of deposit, the hydrothermal Olserum-Djupedal REE-phosphate mineralization in SE Sweden. An early, high-temperature REE stage is characterized by abundant monazite-(Ce) and xenotime-(Y) coexisting with fluorapatite and subordinate amounts of (Y,REE,U,Fe)-(Nb,Ta) oxides. During a subsequent stage, allanite-(Ce) and ferriallanite-(Ce) formed locally, partly resulting from the breakdown of primary monazite-(Ce). Alteration of allanite-(Ce) or ferriallanite-(Ce) to bastnasite-(Ce) and minor synchysite-(Ce) at lower temperatures represents the latest stage of REE mineral formation. The paragenetic sequence and mineral chemistry of the allanites record an increase in Ca content in the fluid. We suggest that this local increase in Ca, in conjunction with changes in oxidation state, were the key factors controlling the stability of monazite-(Ce) in the assemblages of the Olserum-Djupedal deposit. We interpret the alteration and replacement of primary monazite-(Ce), xenotime-(Y), fluorapatite, and minor (Y,REE,U,Fe)-(Nb, Ta) oxide phase(s), to be the consequence of coupled dissolution-reprecipitation processes. These processes mobilized REE,Th,U, and Nb-Ta, which caused the formation of secondary monazite-(Ce), xenotime-(Y), fluorapatite, and minor amounts of allanite-(Ce) and ferriallanite-(Ce). In addition, these alteration processes produced uraninite, thorite, columbite-(Fe), and uncharacterized (Th,U,Y,Ca)-silicates. Textural relations show that the dissolution-reprecipitation processes affecting fluorapatite preceded those affecting monazite-(Ce), xenotime-(Y), and the (Y, REE, U, Fe)-(Nb, Ta) oxide phase(s). The mineralogy of the primary ore mineralization and the subsequently formed alteration assemblages demonstrate the combined mobility of REE and HFSE in a natural F-bearing high-temperature hydrothermal system. The observed coprecipitation of monazite-(Ce), xenotime-(Y), and fluorapatite during the primary REE mineralization stage highlights the need for further research on the potentially important role of the phosphate ligand in hydrothermal REE transporting systems.
  •  
2.
  • Biagion, Cristian, et al. (författare)
  • The crystal structure of turneaureite, Ca5(AsO4)3Cl, the arsenate analog of chlorapatite and its relationships with the arsenate apatites johnbaumite and svabite
  • 2017
  • Ingår i: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 102, s. 1981-1986
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structure of turneaureite, ideally Ca5(AsO4)3Cl, was studied using a specimen from the Brattfors mine, Nordmark, Värmland, Sweden, by means of single-crystal X-ray diffraction data. The structure was refinedto R1 = 0.017 on the basis of 716 unique reflectios with Fo > 4σ(Fo) in the P63/m space group, with unit-cell parameters a = 9.9218(3), c = 6.8638(2) Å, V = 585.16(4) Å3. The chemical composition of the sample, determined by electron-microprobe analysis, is (in wt%; average of 10 spot analyses): SO3 0.22, P2O5 0.20, V2O5 0.01, As2O5 51.76, SiO2 0.06, CaO 41.39, MnO 1.89, SrO 0.12, BaO 0.52, PbO 0.10, Na2O 0.02, F 0.32, Cl 2.56, H2Ocalc 0.58, O(≡F+Cl) –0.71, total 99.04. On the basis of 13 anions per formula unit, the empirical formula corresponds to (Ca4.82Mn0.17Ba0.02Sr0.01)∑5.02 (As2.94P0.02S0.02Si0.01)∑2.99O12[Cl0.47(OH)0.42F0.11]∑1.00.Turneaureite is topologically similar to the other members of the apatite supergroup: columns of face-sharing M1 polyhedra running along c are connected through TO4 tetrahedra with channels hosting M2 cations and X anions. Owing to its particular chemical composition, the studied turneaureite can be considered as a ternary calcium arsenate apatite; consequently it has several partially filledanion sites within the anion columns. Polarized single-crystal FTIR spectra of the studied sample indicate stronger hydrogen bonding and less diverse short-range atom arrangements around (OH) groups in turneaureite as compared to the related minerals johnbaumite and svabite. An accurate knowledge of the atomic arrangement of this apatite-remediation mineral represents an improvement in our understanding of minerals able to sequester and stabilize heavy metals such as arsenic in polluted areas.
  •  
3.
  • Biagioni, Cristian, et al. (författare)
  • The crystal structure of svabite, Ca5(AsO4)3F, an arsenate member of the apatite supergroup
  • 2016
  • Ingår i: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 101, s. 1750-1755
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structure of svabite, ideally Ca5(AsO4)3F, was studied using a specimen from the Jakobsberg mine, Värmland, Sweden, by means of single-crystal X‑ray diffraction data. The structure was refined to R1 = 0.032 on the basis of 928 unique reflections with Fo > 4s(Fo) in the P63/m space group, with unit-cell parameters a = 9.7268(5), c = 6.9820(4) Å, V = 572.07(5) Å3. The chemical composition of the sample, determined by electron-microprobe analysis, is (in wt%, average of 10 spot analyses): SO3 0.49, P2O5 0.21, V2O5 0.04, As2O5 51.21, SiO2 0.19, CaO 39.31, MnO 0.48, SrO 0.03, PbO 5.19, Na2O 0.13, F 2.12, Cl 0.08, H2Ocalc 0.33, O (≡ F+Cl) –0.91, total 98.90. On the basis of 13 anions per formula unit, the empirical formula corresponds to (Ca4.66Pb0.16Mn0.04Na0.03)Σ4.89(As2.96S0.04Si0.02P0.02)Σ3.04O12[F0.74(OH)0.24Cl0.01]. Svabite is topologically similar to the other members of the apatite supergroup: columns of face-sharing M1 polyhedra running along c are connected through TO4 tetrahedra with channels hosting M2 cations and X anions. The crystal structure of synthetic Ca5(AsO4)3F was previously reported as triclinic. On the contrary, the present refinement of the crystal structure of svabite shows no deviations from the hexagonal symmetry. An accurate knowledge of the atomic arrangement of this apatite-remediation mineral represents an improvement in our understanding of minerals able to sequester and stabilize heavy metals such as arsenic in polluted areas.
  •  
4.
  • Bosi, Ferdinando, et al. (författare)
  • Crystal chemistry of spinels in the system MgAl2O4-MgV2O4-Mg2VO4
  • 2016
  • Ingår i: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 101, s. 580-586
  • Tidskriftsartikel (refereegranskat)abstract
    • Eight spinel single-crystal samples belonging to the spinel sensu stricto-magnesiocoulsonite series (MgAl2O4-MgV2O4) were synthesized and crystal-chemically characterized by X‑ray diffraction, electron microprobe and optical absorption spectroscopy. Site populations show that the tetrahedrally coordinated site (T) is populated by Mg and minor Al for the spinel sensu stricto compositions, and only by Mg for the magnesiocoulsonite compositions, while the octahedrally coordinated site (M) is populated by Al, V3+, minor Mg, and very minor amounts of V4+. The latter occurs in appreciable amounts in the Al-free magnesium vanadate spinel, T(Mg)M(Mg0.26V3+1.48V4+0.26)O4, showing the presence of the inverse spinel VMg2O4. The studied samples are characterized by substitution of Al3+ for V3+ and (Mg2++V4+) for 2V3+ described in the system MgAl2O4-MgV2O4-VMg2O4.The present data in conjunction with data from the literature provide a basis for quantitative analyses of two solid-solution series MgAl2O4-MgV23+O4 and MgV23+O4-V4+Mg2O4. Unit-cell parameter increases with increasing V3+ along the series MgAl2O4-MgV2O4 (8.085–8.432 Å), but only slightly increases with increasing V3+ along the series VMg2O4-MgV2O4 (8.386–8.432 Å). Although a solid solution could be expected between the MgAl2O4 and VMg2O4 end-members, no evidence was found. Amounts of V4+ are nearly insignificant in all synthetic Al-bearing vanadate spinels, but are appreciable in Al-free vanadate spinel.An interesting observation of the present study is that despite the observed complete solid-solution along the MgAl2O4-MgV2O4 and MgV2O4-VMg2O4 series, the spinel structure seems to be unable to stabilize V4+ in any intermediate members on the MgAl2O4-Mg2VO4 join even at high oxygen fugacities. This behavior indicates that the accommodation of specific V-valences can be strongly influenced by crystal-structural constraints, and any evaluation of oxygen fugacities during mineral formation based exclusively on V cation valence distributions in spinel should be treated with caution. The present study underlines that the V valency distribution in spinels is not exclusively reflecting oxygen fugacities, but also depends on activities and solubilities of all chemical components in the crystallization environment.
  •  
5.
  • Breton, Hélène, et al. (författare)
  • Static compression of Fe4N to 77 GPa and its implications for nitrogen storage in the deep Earth
  • 2019
  • Ingår i: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 104:12, s. 1781-1787
  • Tidskriftsartikel (refereegranskat)abstract
    • Compression and decompression experiments on face-centered cubic (fcc) γ′-Fe4N to 77 GPa at room temperature were conducted in a diamond-anvil cell with in situ X-ray diffraction (XRD) to examine its stability under high pressure. In the investigated pressure range, γ′-Fe4N did not show any structural transitions. However, a peak broadening was observed in the XRD patterns above 60 GPa. The obtained pressure-volume data to 60 GPa were fitted to the third-order Birch-Murnaghan equation of state (EoS), which yielded the following elastic parameters: K0 = 169 (6) GPa, K′ = 4.1 (4), with a fixed V0 = 54.95 Å at 1 bar. A quantitative Schreinemakers' web was obtained at 15–60 GPa and 300–1600 K by combining the EoS for γ′-Fe4N with reported phase stability data at low pressures. The web indicates the existence of an invariant point at 41 GPa and 1000 K where γ′-Fe4N, hexagonal closed-packed (hcp) ε-Fe7N3, double hexagonal closed-packed β-Fe7N3, and hcp Fe phases are stable. From the invariant point, a reaction γ′-Fe4N = β-Fe7N3 + hcp Fe originates toward the high-pressure side, which determines the high-pressure stability of γ′-Fe4N at 56 GPa and 300 K. Therefore, the γ′-Fe4N phase observed in the experiments beyond this pressure must be metastable. The obtained results support the existing idea that β-Fe7N3 would be the most nitrogen-rich iron compound under core conditions. An iron carbonitride Fe7(C,N)3 found as a mantle-derived diamond inclusion implies that β-Fe7N3 and Fe7C3 may form a continuous solid solution in the mantle deeper than 1000 km depth. Diamond formation may be related to the presence of fluids in the mantle, and dehydration reactions of high-pressure hydrous phase D might have supplied free fluids in the mantle at depths greater than 1000 km. As such, the existence of Fe7(C,N)3 in diamond can be an indicator of water transportation to the deep mantle.
  •  
6.
  •  
7.
  • Fernández-Remolar, David, et al. (författare)
  • A mineralogical archive of the biogeochemical sulfur cycle preserved in the subsurface of the Río Tinto system
  • 2018
  • Ingår i: American Mineralogist. - : Walter de Gruyter. - 0003-004X .- 1945-3027. ; 103:3, s. 394-411
  • Tidskriftsartikel (refereegranskat)abstract
    • The search for extinct and extant life on Mars is based on the study of biosignatures that could be preserved under Mars-like, extreme conditions that are replicated in different terrestrial analog environments. The mineral record in the subsurface of the Río Tinto system is one example of a Mars analog site that has been exposed to weathering conditions, including the biogeochemical activity of Fe and S chemolithotrophic bacteria, for millions of years. The SEM-EDAX analysis of different samples recovered in the Peña de Hierro area from four boreholes, ranging from 166 to 610 m in depth, has provided the identification of microbial structures that have affected a suite of hydrothermal minerals (~345 Ma) as well as minerals likely produced by biological activity in more recent times (<7 Ma). The hydrothermal minerals correspond to reduced sulfur or sulfate-bearing compounds (e.g., pyrite and barite) that are covered by bacilli- or filamentous-like microbial structures and/or secondary ferrous carbonates (e.g., siderite) with laminar to spherical structures. The secondary iron carbonates can be in direct contact or above an empty interphase with the primary hydrothermal minerals following a wavy to bent contact. Such an empty interphase is usually filled with nanoscale, straight filamentous structures that have a carbonaceous composition. The occurrence of a sulfur and iron chemolithotrophic community in the Río Tinto basement strongly suggests that the association between sulfur-bearing minerals, dissolution scars and secondary minerals of biological origin is a complex process involving the microbial attack on mineral surfaces by sulfur reducing bacteria followed by the precipitation of iron-rich carbonates. In this scenario, iron sulfide compounds such as pyrite would act as electron donors under microbial oxidation, while sulfate minerals such as barite would act as electron acceptors through sulfate reduction. Furthermore, the formation of siderite would have resulted from carbonate biomineralization of iron chemoheterotrophic organims or other microorganisms that concentrate carbonate through metabolic pathways. Although the distribution of the mineral biosignatures at depth clearly follows a redox gradient, they show some irregular allocation underground, suggesting that the geochemical conditions governing the microbial activity are affected by local changes associated with the fracturing pattern of the Río Tinto basement. The abundance of sulfur- and iron-bearing minerals in the Mars crust suggests that the Río Tinto mineral biosignatures can be useful in the search for extant and extinct subsurface life on the red planet
  •  
8.
  •  
9.
  • Kleine, Barbara I., et al. (författare)
  • The mechanism of infiltration of metamorphic fluids recorded by hydration and carbonation of epidote-amphibolite facies metabasaltic sills in the SW Scottish Highlands
  • 2015
  • Ingår i: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 100:11-12, s. 2702-2717
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we investigate a group of metabasaltic sills from the SW Scottish Highlands metamorphosed at epidote-amphibolite facies conditions that provide useful insight into the mechanisms and characteristics of fluid infiltration during metamorphism. The sills are amphibole and garnet bearing and exhibit a strong foliation in the sill margins that developed pre- to syn- peak metamorphism. Fluid infiltration caused hydration and carbonation in the sills, expressed as 1) replacement of garnet and amphibole by chlorite and calcite and 2) replacement of amphibole and epidote to form chlorite and calcite. Using garnet-amphibole and garnet-chlorite geothermometers we show that these reactions occurred after peak metamorphism at T = 290 to 400°C. Reaction textures show that the fluid infiltration into the sill that caused hydration and carbonation occurred in the absence of deformation. The fluid infiltration was mineralogically controlled with greater fluid access in areas of abundant fine-grained elongate minerals such as amphibole and chlorite. The replacement of garnet by chlorite most likely occurred by an interface-coupled dissolution-precipitation mechanism as evidenced by perfect pseudomorphic textures of garnet, porosity generation behind the reactive interface and fracturing ahead of this interface. Porosity generated in the product chlorite enhanced fluid access to the replacement front. The study shows that deformation was not required for extensive fluid infiltration and alteration during metamorphism. Fluid flow uses a pre-existing foliation to gain access to the rock, taking advantage of the anisotropic shape of the aligned minerals.
  •  
10.
  • Spektor, Kristina, et al. (författare)
  • Formation of hydrous stishovite from coesite in high-pressure hydrothermal environments
  • 2016
  • Ingår i: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 101:11, s. 2514-2524
  • Tidskriftsartikel (refereegranskat)abstract
    • In low-temperature, high-pressure hydrothermal environments coesite transforms into hydrous forms of stishovite. We studied hydrous stishovite produced from hydrothermal treatment of silica glass as initial SiO2 source at temperatures of 350-550 degrees C and pressures around 10 GPa. The P-T quenched samples were analyzed by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermal analysis, and IR and magic-angle spinning (MAS) NMR spectroscopy. The presence of significant amounts of H2O (ranging from 0.5 to 3 wt%) is shown from thermogravimetric measurements. PXRD reveals that at temperatures below 400 degrees C, hydrous stishovite is obtained as two distinct phases that may relate to the solid ice-VII environment present at prevailing P-T conditions. Initially formed hydrous stishovite is metastable and dehydrates over time in the low-temperature, high-pressure hydrothermal environment. The primary mechanism of H incorporation in stishovite is a direct substitution of 4H(+) for Si4+ yielding unique octahedral hydrogarnet defects. In IR spectra this defect manifests itself by two broad but distinct bands at 2650 and 2900 cm(-1), indicating strong hydrogen bonding. These bands are shifted in the deuteride to 2029 and 2163 cm(-1), respectively. Protons of the octahedral hydrogarnet defect produce H-1 MAS NMR signals in the 9-12 ppm region. The presence of multiple resonances suggests that the octahedral defect is associated with various proton arrangements. At elevated temperatures, the NMR signals narrow considerably because of proton dynamics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20
Typ av publikation
tidskriftsartikel (20)
Typ av innehåll
refereegranskat (20)
Författare/redaktör
Bosi, Ferdinando (6)
Hålenius, Ulf (5)
Skogby, Henrik (3)
Skogby, Henrik, 1956 ... (2)
Jonsson, Erik, 1967- (2)
Pasero, Marco (2)
visa fler...
Whitehouse, Martin J ... (1)
Persson, Per (1)
Navrotsky, Alexandra (1)
Meinhold, Guido (1)
Pitcairn, Iain K. (1)
Edén, Mattias (1)
Majka, Jaroslaw (1)
Zack, Thomas, 1968 (1)
Billström, Kjell (1)
Häussermann, Ulrich (1)
Högdahl, Karin, 1962 ... (1)
Wagner, Thomas (1)
Andersson, Stefan S. (1)
Michallik, Radoslaw ... (1)
Andreozzi, Giovanni (1)
Bischoff, A (1)
Ward, D (1)
Fernández-Remolar, D ... (1)
Tegner, Christian (1)
Pease, Victoria (1)
Biagion, Cristian (1)
Biagioni, Cristian (1)
Fregola, Rosa Anna (1)
Breton, Hélène (1)
Komabayashi, Tetsuya (1)
Thompson, Samuel (1)
Potts, Nicola (1)
McGuire, Christopher (1)
Suehiro, Sho (1)
Anzellini, Simone (1)
Ohishi, Yasuo (1)
Bruschini, Enrico (1)
Speziale, Sergio (1)
Canadillas-Delgado, ... (1)
Amils, Ricardo (1)
Nylén, Johanna (1)
Mihailova, Boriana (1)
Banerjee, Neil (1)
Gómez-Ortiz, David (1)
Izawa, Matthew (1)
Harlov, Dan (1)
Fernandez Diaz, Mari ... (1)
Gatta, G. Diego (1)
Spektor, Kristina (1)
visa färre...
Lärosäte
Naturhistoriska riksmuseet (10)
Uppsala universitet (4)
Stockholms universitet (3)
Göteborgs universitet (1)
Luleå tekniska universitet (1)
Lunds universitet (1)
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (18)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy