SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0019 1035 OR L773:1090 2643 srt2:(2010-2014)"

Sökning: L773:0019 1035 OR L773:1090 2643 > (2010-2014)

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brain, D., et al. (författare)
  • A comparison of global models for the solar wind interaction with Mars
  • 2010
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 206:1, s. 139-151
  • Tidskriftsartikel (refereegranskat)abstract
    • We present initial results from the first community-wide effort to compare global plasma interaction model results for Mars. Seven modeling groups participated in this activity, using MHD, multi-fluid, and hybrid assumptions in their simulations. Moderate solar wind and solar EUV conditions were chosen, and the conditions were implemented in the models and run to steady state. Model output was compared in three ways to determine how pressure was partitioned and conserved in each model, the location and asymmetry of plasma boundaries and pathways for planetary ion escape, and the total escape flux of planetary oxygen ions. The two participating MHD models provided similar results, while the five sets of multi-fluid and hybrid results were different in many ways. All hybrid results, however, showed two main channels for oxygen ion escape (a pickup ion 'plume' in the hemisphere toward which the solar wind convection electric field is directed, and a channel in the opposite hemisphere of the central magnetotail), while the MHD models showed one (a roughly symmetric channel in the central magnetotail). Most models showed a transition from an upstream region dominated by plasma dynamic pressure to a magnetosheath region dominated by thermal pressure to a low altitude region dominated by magnetic pressure. However, calculated escape rates for a single ion species varied by roughly an order of magnitude for similar input conditions, suggesting that the uncertainties in both the current and integrated escape over martian history as determined by models are large. These uncertainties are in addition to those associated with the evolution of the Sun, the martian dynamo, and the early atmosphere, highlighting the challenges we face in constructing Mars' past using models.
  •  
2.
  • Davidsson, Björn J. R., et al. (författare)
  • Gas kinetics and dust dynamics in low-density comet comae
  • 2010
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 210:1, s. 455-471
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive regions of low-density cometary comae are characterized by important deviations from the Maxwell-Boltzmann velocity distribution, i.e. breakdown of thermodynamic equilibrium. The consequences of this on the shapes of emission and absorption lines, and for the acceleration of solid bodies due to gas drag, have rarely been investigated. These problems are studied here to aid in the development of future coma models, and in preparation for observations of Comet 67P/Churyumov-Gerasimenko from the ESA Rosetta spacecraft. Two topics in particular, related to Rosetta, are preparation for in situ observations of water, carbon monoxide, ammonia, and methanol emission lines by the mm/sub-mm spectrometer MIRO, as well as gas drag forces on dust grains and on the Rosetta spacecraft itself. Direct Simulation Monte Carlo (DSMC) modeling of H2O/CO mixtures in spherically symmetric geometries at various heliocentric distances are used to study the evolution of the (generally non-Maxwellian) velocity distribution function throughout the coma. Such distribution functions are then used to calculate Doppler broadening profiles and drag forces. It is found that deviation from thermodynamic equilibrium indeed is commonplace, and already at 2.5 AU from the Sun the entire comet coma displays manifestations of such breakdown, e.g., non-equal partitioning of energy between kinetic and rotational modes, causing substantial differences between translational and rotational temperatures. We exemplify how deviations from thermodynamic equilibrium affect the properties of Doppler broadened line profiles. Upper limits on the size of liftable dust grains as well as terminal grain velocities are presented. Furthermore, it is demonstrated that the drag-to-gravity force ratio is likely to decrease with decreasing cometocentric distance, which may be of relevance both for Rosetta and for the lander probe Philae.
  •  
3.
  • Davidsson, Björn J. R., et al. (författare)
  • Surface roughness and three-dimensional heat conduction in thermophysical models
  • 2014
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 243, s. 58-77
  • Tidskriftsartikel (refereegranskat)abstract
    • A thermophysical model is presented that considers surface roughness, cast shadows, multiple or single scattering of radiation, visual and thermal infrared self heating, as well as heat conduction in one or three dimensions. The code is suitable for calculating infrared spectral energy distributions for spatially resolved or unresolved minor Solar System bodies without significant atmospheres or sublimation, such as the Moon, Mercury, asteroids, irregular satellites or inactive regions on comet nuclei. It is here used to explore the effects of surface roughness on spatial scales small enough for heat conduction to erase lateral temperature gradients. Analytically derived corrections to one-dimensional models that reproduce the results of three-dimensional modeling are presented. We find that the temperature of terrains with such small-scale roughness is identical to that of smooth surfaces for certain types of topographies and non-scattering material. However, systematic differences between smooth and rough terrains are found for scattering materials, or topographies with prominent positive relief. Contrary to common beliefs, the roughness on small spatial scales may therefore affect the thermal emission of Solar System bodies.
  •  
4.
  • Davidsson, Björn J. R., et al. (författare)
  • Thermal inertia and surface roughness of Comet 9P/Tempel 1
  • 2013
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 224:1, s. 154-171
  • Tidskriftsartikel (refereegranskat)abstract
    • Re-calibrated near-infrared spectroscopy of the resolved nucleus of Comet 9P/Tempel 1 acquired by the Deep Impact spacecraft has been analyzed by utilizing the post-Stardust-NExT nucleus shape model and spin pole solution, as well as a novel thermophysical model that explicitly accounts for small-scale surface roughness and thermal inertia. We find that the thermal inertia varies measurably across the surface, and that thermal emission from certain regions only can be reproduced satisfactory if surface roughness is accounted for. Particularly, a scarped/pitted terrain that experienced morning sunrise during the flyby is measurably rough (Hapke mean slope angle similar to 45 degrees) and has a thermal inertia of at most 50J m(-2) K-1 s(-1/2), but probably much lower. However, thick layered terrain and thin layered terrain experiencing local noon during the flyby have a substantially larger thermal inertia, reaching 150J m(-2) K-1 s(-1/2) if the surface is as rough as the scarped/pitted terrain, but 200J m(-2) K-1 s(-1/2) if the terrain is considered locally flat. Furthermore, the reddening of the nucleus near-infrared 1.5-2.2 gm spectrum varies between morphological units, being reddest for thick layered terrain (median value 3.4% k angstrom(-1)) and most neutral for the smooth terrain known to contain surface water ice (median value 3.1% k angstrom(-1)). Thus, Comet 9P/Tempel 1 is heterogeneous in terms of both thermophysical and optical properties, due to formation conditions and/or post-formation processing. 
  •  
5.
  • DeMeo, Francesca E., et al. (författare)
  • Mars encounters cause fresh surfaces on some near-Earth asteroids
  • 2014
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 227, s. 112-122
  • Tidskriftsartikel (refereegranskat)abstract
    • All airless bodies are subject to the space environment, and spectral differences between asteroids and meteorites suggest many asteroids become weathered on very short (<1 Myr) timescales. The spectra of some asteroids, particularly Q-types, indicate surfaces that appear young and fresh, implying they have been recently been exposed. Previous work found that Earth encounters were the dominant freshening mechanism and could be responsible for all near-Earth object (NEO) Q-types. In this work we increase the known NEO Q-type sample of by a factor of three. We present the orbital distributions of 64 Q-type near-Earth asteroids, and seek to determine the dominant mechanisms for refreshing their surfaces. Our sample reveals two important results: (i) the relatively steady fraction of Q-types with increasing semi-major axis and (ii) the existence of Q-type near-Earth asteroids with Minimum Orbit Intersection Distances (MOID) that do not have orbit solutions that cross Earth. Both of these are evidence that Earth-crossing is not the only scenario by which NEO Q-types are freshened. The high Earth-MOID asteroids represent 10% of the Q-type population and all are in Amor orbits. While surface refreshing could also be caused by Main Belt collisions or mass shedding from YORP spinup, all high Earth-MOID Q-types have the possibility of encounters with Mars indicating Mars could be responsible for a significant fraction of NEOs with fresh surfaces.
  •  
6.
  • Domingue, Deborah L., et al. (författare)
  • Whole-disk spectrophotometric properties of Mercury : Synthesis of MESSENGER and ground-based observations
  • 2010
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 209:1, s. 101-124
  • Tidskriftsartikel (refereegranskat)abstract
    • Disk-integrated and disk-resolved measurements of Mercury's surface obtained by both the Mercury Dual Imaging System (MDIS) and the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) onboard the MErcury Surface. Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft were analyzed and compared with previous ground-based observations of Mercury at 11 wavelengths The spectra show no definitive absorption features and display a red spectral slope (increasing reflectance with increasing wavelength) typical of space-weathered rocky sui faces The MDIS spectra show evidence of phase reddening, which is not observed in the MASCS spectra The MDIS spectra are commensurate with ground-based observations to within 10%, whereas the MASCS spectra display greater discrepancies with ground-based observations at near-infrared wavelengths The derived photometric calibrations provide corrections within 10% for observations taken at phase angles less than similar to 100 degrees The derived photometric properties are indicative of a more compact regolith than that of the lunar surface or of average S-type asteroids The photometric roughness of the cur face is also much smoother than the Moon's The calculated geometric albedo (reflectance at zero phase) is higher than lunar values The lower reflectance of immature units on Mercury compared with immature units Oil the Moon, in conjunction with the higher geometric albedo, is indicative of more complicated grain structures within Mercury's regolith.
  •  
7.
  • Farrell, W. M., et al. (författare)
  • An estimate of the dust pickup current at Enceladus
  • 2014
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 239, s. 217-221
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate that the acceleration of submicron dust originating at Enceladus by a reduced co-rotating E-field is capable of creating a dust pickup current perpendicular to the magnetic field with values ranging from 3 to 15 kA (depending upon the effective grain charge). Such a current represents a new contribution to the total pickup current in the region. As such, we suggest that dust pickup currents, along with ion and electron pickup currents, are all active within the plume.
  •  
8.
  • Farrell, William M., et al. (författare)
  • The electromagnetic pickup of submicron-sized dust above Enceladus's northern hemisphere
  • 2012
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 219:1, s. 498-501
  • Tidskriftsartikel (refereegranskat)abstract
    • As the saturnian magnetoplasma sweeps past Enceladus, it experiences both a decrease in electron content and sharp slowdown in the northern hemisphere region within similar to 5 Enceladus Radii (R-e). This slowdown is observed by Cassini in regions not obviously associated with the southern directed plume-originating ions. We suggest herein that the decrease in northern hemisphere electron content and plasma slowdown could both be related to the presence of fine dust grains that are being accelerated by the Lorentz force created within the saturnian magnetic field system.
  •  
9.
  • Fouchard, M., et al. (författare)
  • Planetary perturbations for Oort cloud comets : II. Implications for the origin of observable comets
  • 2014
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 231, s. 110-121
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Monte Carlo simulations of the dynamical history of the Oort cloud, where in addition to the main external perturbers (Galactic tides and stellar encounters) we include, as done in a companion paper (Fouchard, M., Rickman, H., Froeschle, Ch., Valsecchi, G.B. [2013b] Icarus, in press), the planetary perturbations experienced each time the comets penetrate to within 50 AU of the Sun. Each simulation involves an initial sample of four million comets and extends over a maximum of 5 Gyr. For better understanding of the outcomes, we supplement the full dynamical model by others, where one or more of the effects are left out. We concentrate on the production of observable comets, reaching for the first time a perihelion within 5 AU of the Sun. We distinguish between four categories, depending on whether the comet jumps across, or creeps through, the Jupiter-Saturn barrier (perihelion distances between 5 and 15 AU), and whether the orbit leading to the observable perihelion is preceded by a major planetary perturbation or not. For reasons explained in the paper, we call the strongly perturbed comets "Kaib-Quinn comets". We thus derive a synthetic picture of the Oort spike, from which we draw two main conclusions regarding the full dynamical model. One is that 2/3 of the observable comets are injected with the aid of a planetary perturbation at the previous perihelion passage, and about half of the observable comets are of the Kaib-Quinn type. The other is that the creepers dominate over the jumpers. Due to this fact, the spike peaks at only 31000 AU, and the majority of new comets have semi-major axes less than this value. The creepers show a clear preference for retrograde orbits as a consequence of the need to avoid untimely, planetary ejection before becoming observable. Thus, the new comets should have a 60/40 preference for retrograde against prograde orbits in apparent conflict with observations. However, both these and other results depend on our model assumptions regarding the initial structure of the Oort cloud, which is isotropic in shape and has a relatively steep energy distribution. We also find that they depend on the details of the past history of external perturbations including GMC encounters, and we provide special discussions of those issues.
  •  
10.
  • Fouchard, M., et al. (författare)
  • Planetary perturbations for Oort cloud comets : III. Evolution of the cloud and production of centaurs and Halley type comets
  • 2014
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 231, s. 99-109
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Monte Carlo simulations of the dynamical history of the Oort cloud, where in addition to the main external perturbers (Galactic tides and stellar encounters) we include, as done in a companion paper (Fouchard, M., Rickman, H., Froeschle, Ch., Valsecchi, G.B. [2013b] Icarus, in press), the planetary perturbations experienced each time the comets penetrate to within 50 AU of the Sun. Each simulation involves an initial sample of four million comets and extends over a maximum of 5 Gyr. For better understanding of the outcomes, we supplement the full dynamical model by others, where one or more of the effects are left out. In the companion paper we studied in detail how observable comets are injected from the Oort cloud, when account is taken of the planetary perturbations. In the present paper we concentrate on how the cloud may evolve in the long term and also on the production of decoupled comets, which evolve into semi-major axes less than 1000 AU. Concerning the long-term evolution, we find that the largest stellar perturbations that may statistically be expected during the age of the Solar System induce a large scale migration of comets within the cloud. Thus, comets leave the inner parts, but the losses from the outer parts are even larger, so at the end of our simulations the Oort cloud is more centrally condensed than at the beginning. The decoupled comets, which form a source of centaurs and Halley type comets (roughly in the proportions of 70% and 30%, respectively), are mainly produced by planetary perturbations, Jupiter and Saturn being the most efficient. This effect is dependent on synergies with the Galactic tide and stellar encounters, bringing the perihelia of Oort cloud comets into the planetary region. The star-planet synergy has a large contribution due to the strong encounters that produce major comet showers. However, outside these showers a large majority of decouplings may be attributed to the tide-planet synergy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy