SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0021 9673 ;srt2:(2020-2024)"

Sökning: L773:0021 9673 > (2020-2024)

  • Resultat 1-10 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdel-Rehim, Mohamed, et al. (författare)
  • Microextraction approaches for bioanalytical applications : An overview
  • 2020
  • Ingår i: Journal of Chromatography A. - : Elsevier B.V.. - 0021-9673 .- 1873-3778. ; 1616
  • Tidskriftsartikel (refereegranskat)abstract
    • Biological samples are usually complex matrices due to the presence of proteins, salts and a variety of organic compounds with chemical properties similar to those of the target analytes. Therefore, sample preparation is often mandatory in order to isolate the analytes from troublesome matrices before instrumental analysis. Because the number of samples in drug development, doping analysis, forensic science, toxicological analysis, and preclinical and clinical assays is steadily increasing, novel high throughput sample preparation approaches are calling for. The key factors in this development are the miniaturization and the automation of the sample preparation approaches so as to cope with most of the twelve principles of green chemistry. In this review, recent trends in sample preparation and novel strategies will be discussed in detail with particular focus on sorptive and liquid-phase microextraction in bioanalysis. The actual applicability of selective sorbents is also considered. Additionally, the role of 3D printing in microextraction for bioanalytical methods will be pinpointed.
  •  
2.
  • Bagge, Joakim, et al. (författare)
  • Impact of stationary-phase pore size on chromatographic performance using oligonucleotide separation as a model
  • 2020
  • Ingår i: Journal of Chromatography A. - : Elsevier. - 0021-9673 .- 1873-3778. ; 1634, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • A combined experimental and theoretical study was performed to understand how the pore size of packing materials with pores 60-300 angstrom in size affects the separation of 5-50-mer oligonucleotides. For this purpose, we developed a model in which the solutes were described as thin rods to estimate the accessible surface area of the solute as a function of the pore size and solute size. First, an analytical investigation was conducted in which we found that the selectivity increased by a factor of 2.5 when separating 5- and 15-mer oligonucleotides using packing with 300 angstrom rather than 100 angstrom pores. We complemented the analytical investigation by theoretically demonstrating how the selectivity is dependent on the column's accessible surface area as a function of solute size. In the preparative investigation, we determined adsorption isotherms for oligonucleotides using the inverse method for separations of a 9- and a 10-mer. We found that preparative columns with a 60 angstrom-pore-size packing material provided a 10% increase in productivity as compared with a 300 A packing material, although the surface area of the 60 angstrom packing is as much as five time larger.
  •  
3.
  • Causevic, Ariana, et al. (författare)
  • Non-aqueous reversed phase liquid chromatography with charged aerosol detection for quantitative lipid analysis with improved accuracy
  • 2021
  • Ingår i: Journal of Chromatography A. - : Elsevier BV. - 0021-9673. ; 1652
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a great need for efficient analysis of the composition of vegetable oils and fats, since it affects the physical and technical properties. However, due to the complex nature of these kind of samples, it is often difficult and costly. In the present study, we developed a Non-Aqueous Reversed-Phase HPLC method that can be used to separate and quantify different free fatty acids, fatty acid esters, monoacylglycerides, diacylglycerides and triacylglycerides, including regioisomers such as SOS/SSO and 1,2- and 1,3-diolein. Two 25 cm Nucleodur C18 Isis columns in series, sub-ambient column temperature and a mobile phase gradient composed of acetonitrile, acetic acid, isopropanol and heptane were used for the separation. The lipids were detected and quantified using a charged aerosol detector and it was found that the peak shape highly affected the detector response as well as the response uniformity, even when inverse gradient compensation was employed. Thus, calibration and determination of response factors were necessary for reliable quantification. A correlation between response factors and peak width at half peak height was found and used for quantification of non-calibrated components. A quantification approach was suggested including an appropriate selection of calibrated components, depending on sample composition and the accuracy required. It was shown in a complex oil sample that the reduced calibration approach, using only 6 instead of 33 calibrated components, resulted in virtually the same composition, but yielded a more accurate result compared to using relative area that neglects response factors. The method validation showed good reproducibility and accuracy, making it an excellent tool for extensive analysis of complex lipid mixtures.
  •  
4.
  • Choi, Jaeyeong, et al. (författare)
  • Separation and zeta-potential determination of proteins and their oligomers using electrical asymmetrical flow field-flow fractionation (EAF4)
  • 2020
  • Ingår i: Journal of Chromatography A. - : Elsevier BV. - 0021-9673. ; 1633
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrical asymmetrical flow field-flow fractionation (EAF4) is an interesting new analytical technique that separates proteins based on size or molecular weight and simultaneously determines the electrical characteristics of each population. However, until now, the research using EAF4 has not been published except for the proof-of-concept in the original publication by Johann et. al. in 2015 [1]. Hence the methods capabilities and optimized conditions need to be further investigated, such as composition of the carrier liquid, pH stability and effect of the electric field strength. The pH instability was observed in the initial method of EAF4 due to the electrolysis products when applied electric field. Therefore, we have investigated and provided a modified method for rapid pH stabilization through additional focusing step with the electric field. Then, the electrical properties such as the zeta-potential and effective net charge of the monomer and oligomers of three different proteins (GA-Z, BSA, and Ferritin) were determined based on their electrophoretic mobility from EAF4. The results showed that there were limitations to the applicability of separation by EAF4 to proteins. Nevertheless, this study shows that EAF4 is an interesting new technique that can examine the zeta-potential of individual proteins in mixtures (or monomers and oligomers) not accessible by other techniques.
  •  
5.
  • Elmongy, Hatem, et al. (författare)
  • Development and validation of a UHPLC-HRMS method for the simultaneous determination of the endogenous anabolic androgenic steroids in human serum
  • 2020
  • Ingår i: Journal of Chromatography A. - : Elsevier BV. - 0021-9673 .- 1873-3778. ; 1613
  • Tidskriftsartikel (refereegranskat)abstract
    • Being performance enhancing hormones, endogenous anabolic androgenic steroids (EAAS) are banned from most competitive sports by the World Anti-doping Agency (WADA). In anti-doping control laboratories, routine assays are mainly performed on urine samples of athletes in and out of competitions. Serum constitutes a promising alternative to urine as it is less subjected to manipulation or contamination that may influence the method sensitivity. The simultaneous determination of EAAS including conjugated metabolites using LC-MS is very challenging due to their contradicting chemical behaviors at the ionization interface of the mass spectrometer. This may prejudice their detection or limit the method sensitivity. Herein, we have addressed these challenges and developed a new method for the simultaneous determination of unconjugated, sulphate- and glucuronide-conjugated EAAS (Androsterone, Etiocholanolone, testosterone, epitestosterone, dihydrotestosterone, dehydroepiandrosterone, androstenedione and 17a-hydroxyprogesterone) in human serum using ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). The use of mass spectrometric detection in full scan mode facilitated the study of the most versatile adducts for detection and quantitation. A solid phase extraction method was developed for the sample preparation prior to analysis. The method limits of quantitation ranged from 0.006 to 7.904 ng/mL and the recoveries ranged from 70.2% to 96.5%. The method calibration was performed in untreated serum representing realistic matrix composition with correlation coeffecients ranged from 0.9859 to 0.9988. Finally, the serum-levels of the investigated steroids were determined in 4 male and 1 female human subjects to provide estimates of baseline levels based on individual values.
  •  
6.
  • Enmark, Martin, 1984-, et al. (författare)
  • Building machine-learning-based models for retention time and resolution predictions in ion pair chromatography of oligonucleotides
  • 2022
  • Ingår i: Journal of Chromatography A. - : Elsevier. - 0021-9673 .- 1873-3778. ; 1671
  • Tidskriftsartikel (refereegranskat)abstract
    • Support vector regression models are created and used to predict the retention times of oligonucleotides separated using gradient ion-pair chromatography with high accuracy. The experimental dataset consisted of fully phosphorothioated oligonucleotides. Two models were trained and validated using two pseudo orthogonal gradient modes and three gradient slopes. The results show that the spread in retention time differs between the two gradient modes, which indicated varying degree of sequence dependent separation. Peak widths from the experimental dataset were calculated and correlated with the guanine cytosine content and retention time of the sequence for each gradient slope. This data was used to predict the resolution of the n - 1 impurity among 250 0 0 0 random 12-and 16-mer sequences; showing one of the investigated gradient modes has a much higher probability of exceeding a resolution of 1.5, particularly for the 16-mer sequences. Sequences having a high guanine-cytosine content and a terminal C are more likely to not reach critical resolution. The trained SVR models can both be used to identify characteristics of different separation methods and to assist in the choice of method conditions, i.e. to optimize resolution for arbitrary sequences. The methodology presented in this study can be expected to be applicable to predict retention times of other oligonucleotide synthesis and degradation impurities if provided enough training data.
  •  
7.
  • Enmark, Martin, 1984-, et al. (författare)
  • Development of a unified gradient theory for ion-pair chromatography using oligonucleotide separations as a model case
  • 2023
  • Ingår i: Journal of Chromatography A. - : Elsevier. - 0021-9673 .- 1873-3778. ; 1691
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion-pair chromatography is the de facto standard for separating oligonucleotides and related impurities, particularly for analysis but also often for small-scale purification. Currently, there is limited understanding of the quantitative modeling of both analytical and overloaded elution profiles obtained during gradient elution in ion-pair chromatography. Here we will investigate a recently introduced gradient mode, the so-called ion-pairing reagent gradient mode, for both analytical and overloaded separations of oligonucleotides. The first part of the study demonstrates how the electrostatic theory of ion-pair chromatography can be applied for modeling gradient elution of oligonucleotides. When the ion-pair gradient mode is used in a region where the electrostatic surface potential can be linearized, a closed-form expression of retention time can be derived. A unified retention model was then derived, applicable for both ion-pair reagent gradient mode as well as co-solvent gradient mode. The model was verified for two different experimental systems and homo- and heteromeric oligonucleotides of different lengths. Quantitative modeling of overloaded chromatography using the ion-pairing reagent gradient mode was also investigated. Firstly, a unified adsorption isotherm model was developed for both gradient modes. Then, adsorption isotherms parameter of a model oligonucleotide and two major synthetic impurities were estimated using the inverse method. Secondly, the parameters of the adsorption isotherm were then used to investigate how the productivity of oligonucleotide varies with injection volume, gradient slope, and initial retention factor. Here, the productivity increased when using a shallow gradient slope combined with a low initial retention factor. Finally, experiments were conducted to confirming some of the model predictions. Comparison with the conventional co-solvent gradient mode showed that the ion-pairing reagent gradient leads to both higher yield and productivity while consuming less co-solvent.
  •  
8.
  • Enmark, Martin, 1984-, et al. (författare)
  • Selectivity limits of and opportunities for ion pair chromatographic separation of oligonucleotides
  • 2021
  • Ingår i: Journal of Chromatography A. - : Elsevier. - 0021-9673 .- 1873-3778. ; 1651
  • Tidskriftsartikel (refereegranskat)abstract
    • A B S T R A C T Here it was investigated how oligonucleotide retention and selectivity factors are affected by electrostatic and non-electrostatic interactions in ion pair chromatography. A framework was derived describing how selectivity depends on the electrostatic potential generated by the ion-pair reagent concentration, co-solvent volume fraction, charge difference between the analytes, and temperature. Isocratic experiments verified that, in separation problems concerning oligonucleotides of different charges, selectivity increases with increasing surface potential and analyte charge difference and with decreasing co-solvent volume fraction and temperature. For analytes of the same charge, for example, diastereomers of phosphorothioated oligonucleotides, selectivity can be increased by decreasing the co-solvent volume fraction or the temperature and has only a minor dependency on the ion-pairing reagent concentration. An important observation is that oligonucleotide retention is driven predominantly by electrostatic interaction generated by the adsorption of the ion-pairing reagent. We therefore compared classical gradient elution in which the co-solvent volume fraction increases over time versus gradient elution with a constant co-solvent volume fraction but with decreasing ion-pair reagent concentration over time. Both modes decrease the electrostatic potential. Oligonucleotide selectivity was found to increase with decreasing ion pairing reagent concentration. The two elution modes were finally applied to two different model anti sense oligonucleotide separation problems, and it was shown that the ion-pair reagent gradient increases the selectivity of non-charge & ndash;based separation problems while maintaining charge-difference & ndash;based selectivity. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
  •  
9.
  • Espinoza, Daniel, et al. (författare)
  • Automatic procedure for modelling, calibration, and optimization of a three-component chromatographic separation
  • 2024
  • Ingår i: Journal of Chromatography A. - 0021-9673. ; 1720
  • Tidskriftsartikel (refereegranskat)abstract
    • The current landscape of biopharmaceutical production necessitates an ever-growing set of tools to meet the demands for shorter development times and lower production costs. One path towards meeting these demands is the implementation of digital tools in the development stages. Mathematical modelling of process chromatography, one of the key unit operations in the biopharmaceutical downstream process, is one such tool. However, obtaining parameter values for such models is a time-consuming task that grows in complexity with the number of compounds in the mixture being purified.In this study, we tackle this issue by developing an automated model calibration procedure for purification of a multi-component mixture by linear gradient ion exchange chromatography. The procedure was implemented using the Orbit software (Lund University, Department of Chemical Engineering), which both generates a mathematical model structure and performs the experiments necessary to obtain data for model calibration. The procedure was extended to suggest operating points for the purification of one of the components in the mixture by means of multi-objective optimization using three different objectives. The procedure was tested on a three-component protein mixture and was able to generate a calibrated model capable of reproducing the experimental chromatograms to a satisfactory degree, using a total of six assays. An additional seventh experiment was performed to validate the model response under one of the suggested optimum conditions, respecting a 95 % purity requirement. All of the above was automated and set in motion by the push of a button. With these results, we have taken a step towards fully automating model calibration and thus accelerating digitalization in the development stages of new biopharmaceuticals.
  •  
10.
  • Espinoza, Daniel, et al. (författare)
  • Binary separation control in preparative gradient chromatography using iterative learning control
  • 2022
  • Ingår i: Journal of chromatography. A. - : Elsevier BV. - 1873-3778 .- 0021-9673. ; 1673
  • Tidskriftsartikel (refereegranskat)abstract
    • Purification of biopharmaceuticals has shifted toward continuous and integrated processes, in turn bringing along a need for monitoring and control to maintain a desired separation between the target pharmaceutical and any impurities it may carry. In this study, a cycle-to-cycle control of the retention volumes of two compounds in a chromatographic, ion exchange purification step was developed, allowing the process to maintain the desired retention volumes in the separation. The controller made use of a model-based, multivariate iterative learning control (ILC) algorithm that used a quadratic-criterion objective function for optimal set point control, along with feed-forward control based on direct model inversion for preemptive control of set point changes. The model was calibrated using 3 experiments, allowing for fast setup. The controller was tested by introducing three different disturbances to a sequence of otherwise identical ion exchange separation processes: a change in the salt concentration of the elution buffer, a change in set point, and a change in the pH of the elution buffer. It was capable of correcting for all disturbances within at most 3 cycles, proving its efficacy. The successful application of ILC for separation control in biopharmaceutical purification paves the way for the development of further ILC-based control strategies within the field, as well as combination with other control strategies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 39
Typ av publikation
tidskriftsartikel (39)
Typ av innehåll
refereegranskat (39)
Författare/redaktör
Samuelsson, Jörgen, ... (14)
Fornstedt, Torgny, 1 ... (12)
Lesko, Marek (7)
Andersson, Niklas (6)
Nilsson, Bernt (6)
Gomis Fons, Joaquín (4)
visa fler...
Enmark, Martin, 1984 ... (4)
Turner, Charlotta (2)
Sandahl, Margareta (2)
Hober, Sophia, Profe ... (2)
Isaksson, Madelène (2)
Espinoza, Daniel (2)
Haseeb, Abdul (2)
Forsberg, Kerstin, 1 ... (1)
Abdel-Rehim, Mohamed (1)
Pedersen-Bjergaard, ... (1)
Abdel-Rehim, A. (1)
Lucena, R. (1)
Moein, M. M. (1)
Cárdenas, S. (1)
Miró, M. (1)
Prothmann, Jens (1)
Nilsson, Lars (1)
Grey, Carl (1)
Larsson, Emma (1)
Hober, Sophia (1)
Adlercreutz, Patrick (1)
Karlsson, Eva Nordbe ... (1)
Tran, TA (1)
Wahlgren, Marie (1)
Elmongy, Hatem (1)
Ahrens, Lutz (1)
Tröger, Rikard (1)
Svärd, Michael, Doce ... (1)
Emmer, Åsa (1)
Ericsson, Magnus (1)
Larsson, Maria, 1975 ... (1)
Eriksson, Ulrika, 19 ... (1)
Jönsson, Madeleine (1)
Moein, MM (1)
Tallvod, Simon (1)
Kouremenos, Konstant ... (1)
Jonsson, Tobias (1)
Irgum, Knut (1)
Olofsson, Kim (1)
Fransson, Jonas (1)
Bagge, Joakim (1)
Lime, Fredrik (1)
Dahlén, Anders (1)
Chotteau, Véronique, ... (1)
visa färre...
Lärosäte
Karlstads universitet (14)
Lunds universitet (10)
Kungliga Tekniska Högskolan (8)
Stockholms universitet (4)
Karolinska Institutet (3)
Sveriges Lantbruksuniversitet (2)
visa fler...
Göteborgs universitet (1)
Umeå universitet (1)
Örebro universitet (1)
visa färre...
Språk
Engelska (39)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (30)
Teknik (8)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy