SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0043 1737 OR L773:1365 3180 srt2:(2020-2024)"

Sökning: L773:0043 1737 OR L773:1365 3180 > (2020-2024)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Lars (författare)
  • Comparing the emergence of Echinochloa crus-galli populations in different locations. Part I: Variations in emergence timing and behaviour of two populations
  • 2022
  • Ingår i: Weed Research. - : Wiley. - 0043-1737 .- 1365-3180. ; 62, s. 192-202
  • Tidskriftsartikel (refereegranskat)abstract
    • Echinochloa crus-galli (L.) P. Beauv. is one of the most important weeds. It is distributed worldwide and has adapted to diverse habitats and climatic conditions. This study aimed to compare the emergence patterns of two populations of E. crus-galli from different environments at 11 locations across Europe and the Middle East. Seeds of the two populations were collected from maize in Italy and from spring barley in Norway and were then buried in soil in autumn 2015. In the spring of 2016, the soil was disturbed around the usual seedbed preparation date in each location and emergence was recorded. The soil was again disturbed a year later and emergence was recorded for a second season. Total emergence, the times of onset, end and to 50% emergence and the period between 25% and 75% of emergence were analysed by two-way ANOVA and principal components analysis. The Italian population showed a higher emergence than the Norwegian population in Southern locations, while the ranking was reversed in Northern locations. In almost all locations, a tendency to emerge earlier was recorded for the Norwegian population, but the periods from 25% to 75% emergence were similar for both populations. Total emergence, and the times of onset and end of emergence seemed to be mainly under genotypic (plus maternal) control, suggesting there were different temperature thresholds for seedling emergence in each population. Conversely, the duration of emergence seemed to be mainly under environmental control. This research confirms the high variability between populations and suggests the need to continue identifying key characteristics for the development of efficient models for seedling emergence in specific climates and/or latitudes.
  •  
2.
  • Andersson, Lars (författare)
  • Comparing the emergence of Echinochloa crus-galli populations in different locations. Part II: similarities and threshold parameters
  • 2022
  • Ingår i: Weed Research. - : Wiley. - 0043-1737 .- 1365-3180. ; 62, s. 203-214
  • Tidskriftsartikel (refereegranskat)abstract
    • The variability in the emergence process of different populations was confirmed for two Echinochloa crus-galli populations, one from Italy (IT) and the second from Norway (NO). Seeds were sown in 12 localities over Europe and the Middle East, and the emergence patterns of IT and NO were compared with those of several local populations at each location. Seeds of each population were sown in pots buried to the ground level. The base temperature (T-b) for emergence was estimated by (1) analysing logistic models applied to the field emergence of IT and NO, and (2) a germination assay set in winter 2020 at constant temperatures (8, 11, 14, 17, 20, 26, 29 degrees C) with newly collected seeds in 2019 from the same fields where IT and NO had previously been harvested in 2015. The logistic models developed for IT and NO in each location showed that the emergence pattern of IT was similar to that of the local populations in Poland, Italy, Spain, Turkey South and Iran, while NO fitted better to those in Sweden and Latvia. No germination was obtained for IT in a germination chamber, but the estimated T-b with the logistic model was 11.2 degrees C. For NO, the estimated T-b was 8.8 degrees C in the germination chamber and 8.1 degrees C in the field. Results suggest that adaptation to local environmental conditions has led to inter-population differences in T-b and parameter estimates of thermal-time models to predict the emergence of E. crus-galli should only be used for populations with similar climatic and habitat conditions.
  •  
3.
  • Menegat, Alexander (författare)
  • Minimal soil disturbance combined with spring cropping can halt soil seedbank accumulation of Alopecurus myosuroides
  • 2023
  • Ingår i: Weed Research. - : Wiley. - 0043-1737 .- 1365-3180. ; 63, s. 115-122
  • Tidskriftsartikel (refereegranskat)abstract
    • The basic mechanism of soil inversion tillage for control of annual weeds is based on the vertical translocation of weed seeds from the soil surface to deeper soil layers. Buried weed seeds either remain dormant in the soil seedbank and are exposed to biological and chemical decay mechanisms, or they germinate but the seedlings cannot reach the soil surface (fatal germination). However, depending on the seed biology of the respective target species, frequent inversion tillage can lead to a build-up of the soil seedbank. For soil seedbank depletion based on available knowledge of the biology of Alopecurus myosuroides seeds, soil inversion tillage is suggested to be reduced to every third or fourth year with reduced or even no-tillage (direct seeding) in between (rotational inversion tillage systems). Including spring crops in the crop rotation could further help dampening the population growth and hence the seed return into the seedbank. This study investigated the effect of rotational inversion tillage in combination with reduced tillage or direct seeding on the soil seedbank and population development of A. myosuroides. In a long-term field trial, set up in 2012, these tillage strategies were compared with continuous inversion tillage in a 3-year crop rotation with two consecutive years of winter wheat (Triticum aestivum) followed by spring barley (Hordeum vulgare). The results showed a significant decline in the soil seedbank following the spring crop, irrespective of the tillage system. The continuous inversion tillage system and inversion tillage before spring cropping with reduced tillage (shallow tillage with a disc harrow) before winter wheat both led to accumulation of seeds in the soil seedbank. In contrast, inversion tillage before spring cropping with direct seeding of winter wheat depleted the soil seedbank significantly after only one crop rotation. Although only covering one intensively studied field site, these findings highlight the need for diversified cropping systems and indicate potential avenues for reducing soil tillage while controlling economically important weeds.
  •  
4.
  • Neve, Paul, et al. (författare)
  • Current and future glyphosate use in European agriculture
  • 2024
  • Ingår i: Weed research (Print). - : John Wiley & Sons, Ltd. - 0043-1737 .- 1365-3180. ; 64:3, s. 181-
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract There has been a longstanding and contentious debate about the future of glyphosate use in the European Union (EU). In November 2023, the European Commission approved the renewal of the use registration for glyphosate for a further 10?years. Nevertheless, the EU Farm to Fork strategy calls for a 50% reduction in pesticide use by 2030. In November 2022, the European Weed Research Society organised a 2 day workshop to identify critical glyphosate uses in current EU cropping systems and to review the availability of glyphosate alternatives. Workshop participants identified four current, critical uses in EU cropping systems; control and management of perennial weeds, weed control in conservation agriculture, vegetation management in tree and vine crops and herbicide resistance management. There are few herbicide alternatives that provide effective, economic, broad-spectrum control of weeds, particularly perennial weeds. Mechanical weed control, and in particular, soil cultivation is the most obvious glyphosate alternative. However, this is not possible in conservation agriculture systems and, in general, increased soil cultivation has negative impacts for soil health. Emerging technologies for precision weed control can enable more targeted use of glyphosate, greatly reducing use rates. These technologies also facilitate the use and development of alternative targeted physical weed control (e.g. tillage, lasers, electricity), reducing the energy and environmental costs of these approaches. In tree crops, the use of organic and inorganic mulches can reduce the need for glyphosate use. In general, reduced use of glyphosate will require an even greater focus on integrated weed management to reduce weed establishment in agroecosystems, increase weed management diversity and limit the use of alternative resistance-prone herbicides.
  •  
5.
  • Ringselle, Björn, et al. (författare)
  • Dry weight minimum in the underground storage and proliferation organs of six creeping perennial weeds
  • 2021
  • Ingår i: Weed research (Print). - : John Wiley & Sons, Ltd. - 0043-1737 .- 1365-3180. ; 61:3, s. 231-241
  • Tidskriftsartikel (refereegranskat)abstract
    • Many herbaceous perennial plant species gain significant competitive advantages from their underground creeping storage and proliferation organs (CR), making them more likely to become successful weeds or invasive plants. To develop efficient control methods against such invasive or weedy creeping perennial plants, it is necessary to identify when the dry weight minimum of their CR (CR DWmin) occurs. Moreover, it is of interest to determine how the timing of CR DWmin differs in species with different light requirements at different light levels. The CR DWmin of Aegopodium podagraria, Elymus repens and Sonchus arvensis were studied in climate chambers under two light levels (100 and 250 ?mol m?2 s?1), and Reynoutria japonica, R. sachaliensis and R. ? bohemica under one light level (250 ?mol m?2 s?1). Under 250 ?mol m?2 s?1, the CR DWmin occurred before one fully developed leaf in R. sachaliensis, around 1?2 leaves in A. podagraria and E. repens and around four leaves in S. arvensis, R. japonica and R. ? bohemica. In addition to reducing growth in all species, less light resulted in a higher shoot mass fraction in E. repens and S. arvensis, but not A. podagraria; and it delayed the CR DWmin in E. repens, but not S. arvensis. Only 65% of planted A. podagragra rhizomes produced shoots. Beyond the CR DWmin, Reynoutria spp. reinvested in their old CR, while the other species primarily produced new CR. We conclude that A. podagraria, R. sachaliensis and E. repens are vulnerable to control efforts at an earlier developmental stage than S. arvensis, R. japonica and R. bohemica.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy