SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0168 1923 OR L773:1873 2240 srt2:(2020-2024)"

Sökning: L773:0168 1923 OR L773:1873 2240 > (2020-2024)

  • Resultat 1-10 av 59
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmed, Mukhtar (författare)
  • Simulation of evapotranspiration and yield of maize: An Inter-comparison among 41 maize models
  • 2023
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 333
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate simulation of crop water use (evapotranspiration, ET) can help crop growth models to assess the likely effects of climate change on future crop productivity, as well as being an aid for irrigation scheduling for today's growers. To determine how well maize (Zea mays L.) growth models can simulate ET, an initial inter-comparison study was conducted in 2019 under the umbrella of AgMIP (Agricultural Model Inter-Comparison and Improvement Project). Herein, we present results of a second inter-comparison study of 41 maize models that was conducted using more comprehensive datasets from two additional sites -Mead, Nebraska, USA and Bushland, Texas, USA. There were 20 treatment-years with varying irrigation levels over multiple seasons at both sites. ET was measured using eddy covariance at Mead and using large weighing lysimeters at Bushland. A wide range in ET rates was simulated among the models, yet several generally were able to simulate ET rates adequately. The ensemble median values were generally close to the observations, but a few of the models sometimes performed better than the median. Many of the models that did well at simulating ET for the Mead site did poorly for drier, windy days at the Bushland site, suggesting they need to improve how they handle humidity and wind. Additional variability came from the approaches used to simulate soil water evaporation. Fortunately, several models were identified that did well at simulating soil water evaporation, canopy transpiration, biomass accumulation, and grain yield. These models were older and have been widely used, which suggests that a larger number of users have tested these models over a wider range of conditions leading to their improvement. These revelations of the better approaches are leading to model improvements and more accurate simulations of ET.
  •  
2.
  • Bader, Martin K.-F., et al. (författare)
  • Less pronounced drought responses in ring-porous than in diffuse-porous temperate tree species
  • 2022
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier. - 0168-1923 .- 1873-2240. ; 327
  • Tidskriftsartikel (refereegranskat)abstract
    • Tree species differ in their physiological responses to drought, but the underlying causes are often unclear. Here we explored responses of radial growth to centennial drought events and sap flow (Fs) to seasonal drought in four mixed forests on either moist or drier sites in northwestern Switzerland. While the diffuse-porous species (Fagus sylvatica, Prunus avium, Tilia platyphyllos) showed marked growth reductions in 1976 and 2003, two known marker years for severe drought, growth of the two ring-porous species (Quercus petraea and Fraxinus excelsior) was less severely affected. During a dry early to midsummer, diffuse-porous species strongly reduced Fs at the two drier sites but not (or less so) at the two moister sites. Regardless of soil moisture availability, the deep- rooting, ring-porous trees invariably down-regulated Fs to 60–70% of their maxima in response to vapour pressure deficit (VPD) and maintained similar fluxes across sites, irrespective of upper soil moisture conditions. A generalised additive model of normalised Fs as a function of VPD and soil matric potential yielded a drought- sensitivity ranking of Fs led by the two insensitive ring-porous species followed by the diffuse-porous trees (ordered by increasing sensitivity: Fraxinus excelsior < Quercus petraea < Prunus avium < Acer pseudoplatanus < Fagus sylvatica < Tilia platyphyllos). In conclusion, ring-porous tree species exhibited stronger VPD-driven stomatal control over Fs, and tree-ring formation was less sensitive to severe drought than in their neighbouring diffuse-porous species. The Fs regulation explained the greater drought tolerance of the ring-porous trees.
  •  
3.
  • Bhalerao, Rishikesh P. (författare)
  • Differences between four sympatric subtropical tree species in the interactive effects of three environmental cues on leaf-out phenology
  • 2022
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 327
  • Tidskriftsartikel (refereegranskat)abstract
    • Climatic warming is currently changing the spring phenology of extratropical trees, and this has several important effects on the trees and ecosystems. The major climatic cues regulating the spring phenology are winter chilling, spring forcing, and photoperiod. The interactions between these three remain largely unstudied because most studies concentrate on the effects of one cue, or maximally two, at a time. We studied the effects and interactions of chilling duration, forcing temperature, and forcing photoperiod simultaneously in four subtropical tree species. The main emphasis in our experiments was on the interaction of chilling duration and forcing temperature. The existence of this interaction was suggested in the 'Vegis theory', put forward decades ago but largely forgotten since. We also introduced a novel method for testing the theory experimentally. We found support for the Vegis theory in two of the four species examined. In the other two species the leaf-out timing was largely controlled by spring forcing. The effects of photoperiod were generally minor. Our results show that there are major differences between sympatric subtropical tree species in their phenological responses to environmental cues. These differences need to be addressed in the development of process-based tree phenology models. Our results further suggest that different subtropical trees respond differently to climatic warming because of differences related to the Vegis theory. This hypothesis remains to be tested in further studies.
  •  
4.
  • Campbell, David, et al. (författare)
  • Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands
  • 2021
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 308
  • Tidskriftsartikel (refereegranskat)abstract
    • Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting halfhourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET).
  •  
5.
  • Chi, Jinshu, et al. (författare)
  • Forest floor fluxes drive differences in the carbon balance of contrasting boreal forest stands
  • 2021
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 306
  • Tidskriftsartikel (refereegranskat)abstract
    • The forest floor provides an important interface of soil-atmosphere CO2 exchanges but their controls and contributions to the ecosystem-scale carbon budget are uncertain due to measurement limitations. In this study, we deployed eddy covariance systems below- and above-canopy to measure the spatially integrated net forest floor CO2 exchange (NFFE) and the entire net ecosystem CO2 exchange (NEE) at two mature contrasting stands located in close vicinity in boreal Sweden. We first developed an improved cospectra model to correct below-canopy flux data. Our empirical below-canopy cospectra models revealed a greater contribution of large- and small-scale eddies in the trunk space compared to their distribution in the above-canopy turbulence cospectra. We found that applying the above-canopy cospectra model did not affect the below-canopy annual CO2 fluxes at the sparse pine forest but significantly underestimated fluxes at the dense mixed spruce-pine stand. At the mixed spruce-pine stand, forest floor respiration (Rff) was higher and photosynthesis (GPPff) was lower, leading to a 1.4 times stronger net CO2 source compared to the pine stand. We further found that drought enhanced Rff more than GPPff, leading to increased NFFE. Averaged across the six site-years, forest floor fluxes contributed 82% to ecosystem-scale respiration (Reco) and 12% to gross primary production (GPP). Since the annual GPP was similar between both stands, the considerable difference in their annual NEE was due to contrasting Reco, the latter being primarily driven by the variations in NFFE. This implies that NFFE acted as the driver for the differences in NEE between these two contrasting stands. This study therefore highlights the important role of forest floor CO2 fluxes in regulating the boreal forest carbon balance. It further calls for extended efforts in acquiring high spatiotemporal resolution data of forest floor fluxes to improve predictions of global change impacts on the forest carbon cycle.
  •  
6.
  • De Pauw, Karen, et al. (författare)
  • Urban forest microclimates across temperate Europe are shaped by deep edge effects and forest structure
  • 2023
  • Ingår i: Agricultural and Forest Meteorology. - 0168-1923 .- 1873-2240. ; 341
  • Tidskriftsartikel (refereegranskat)abstract
    • The urban heat island (UHI) causes strong warming of cities and their urban forests worldwide. Especially urban forest edges are strongly exposed to the UHI effect, which could impact urban forest biodiversity and functioning. However, it is not known to what extent the UHI effect alters edge-to-interior microclimatic gradients within urban forests and whether this depends on the forests' structure.Here we quantified gradients of air temperature, relative air humidity and vapour pressure deficits (VPD) along urban forest edge-to-interior transects with contrasting stand structures in six major cities across Europe. We performed continuous hourly microclimate measurements for two consecutive years and analysed the magnitude and depth of edge effects, as well as forest structural drivers of microclimatic variation.Compared to edge studies in rural temperate forests, we found that edge effects reached deeper into urban forests, at least up to 50 m. Throughout the year, urban forest edges were warmer and drier compared to forest interiors, with the largest differences occurring during summer and daytime. Not only maximum, but also mean and minimum temperatures were higher at the urban forest edge up to large edge distances (at least 85 m). Denser forests with a higher plant area index buffered high air temperatures and VPDs from spring to autumn.We conclude that urban forest edges are unique ecotones with specific microclimates shaped by the UHI effect. Both forest edges and interiors showed increased buffering capacities with higher forest canopy density. We advocate for the conservation and expansion of urban forests which can buffer increasingly frequent and intense climate extremes. To this end, urban forest managers are encouraged to aim for multi-layered dense forest canopies and consider edge buffer zones of at least 50 m wide.
  •  
7.
  • Díaz-Calafat, Joan, et al. (författare)
  • From broadleaves to conifers : The effect of tree composition and density on understory microclimate across latitudes
  • 2023
  • Ingår i: Agricultural and Forest Meteorology. - 0168-1923 .- 1873-2240. ; 341
  • Tidskriftsartikel (refereegranskat)abstract
    • Forest canopies buffer the macroclimate and thus play an important role in mitigating climate-warming impacts on forest ecosystems. Despite the importance of the tree layer for understory microclimate buffering, our knowledge about the effects of forest structure, composition and their interactions with macroclimate is limited, especially in mixtures of conifers and broadleaves. Here we studied five mixed forest stands along a 1800 km latitudinal gradient covering a 7°C span in mean annual temperature. In each of these forests we established 40 plots (200 in total), in which air and soil temperatures were measured continuously for at least one year. The plots were located across gradients of forest density and broadleaved proportions (i.e. from open to closed canopies, and from 100% conifer to 100% broadleaved tree dominance). Air minimum, mean and maximum temperature offsets (i.e. difference between macroclimate and microclimate) and soil mean temperature offsets were calculated for the coldest and warmest months. Forest structure, and especially forest density, was the key determinant of understory temperatures. However, the absolute and relative importance of the proportion of broadleaves and forest density differed largely between response variables. Forest density ranged from being independent of, to interacting with, tree species composition. The effect of these two variables was independent of the macroclimate along our latitudinal gradient. Temperature, precipitation, snow depth and wind outside forests affected understory temperature buffering. Finally, we found that the scale at which the overstory affects soil microclimate approximated 6-7 m, whereas for air microclimate this was at least 10 m. These findings have implications for biodiversity conservation and forest management in a changing climate, as they facilitate the projection of understory temperatures in scenarios where both forest structure and macroclimate are dynamic. This is especially relevant given the global importance of ongoing forest conversion from conifers to broadleaves, and vice versa.
  •  
8.
  • Dox, Inge, et al. (författare)
  • Wood growth phenology and its relationship with leaf phenology in deciduous forest trees of the temperate zone of Western Europe
  • 2022
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier. - 0168-1923 .- 1873-2240. ; 327
  • Tidskriftsartikel (refereegranskat)abstract
    • Wood growth phenology of temperate deciduous trees is less studied than leaf phenology, hindering the understanding of their interaction. In order to describe the variability of wood growth and leaf phenology across locations, species and years, we performed phenological observations of both xylem formation and leaf development in three typical temperate forest areas in Western Europe (Northern Spain, Belgium and Southern Norway) for four common deciduous tree species (Fagus sylvatica L., Betula pendula Roth., Populus tremula L. and Quercus robur L.) in 2018, 2019 and 2020, with only beech and birch being studied in the final year. The earliest cambial reactivation in spring occurred at the Belgian stands while the end of cambial activity and wood growth cessation generally occurred first in Norway. Results did not show much consistency across species, sites or years and lacked general patterns, except for the end of cambial activity, which occurred generally first in birch. For all species, the site variation in phenophases (up to three months) was substantially larger than the inter-annual variability (up to six weeks). The timeline of bud-burst and cambium reactivation, as well as of foliar senescence and cessation of wood growth, were variable across species even with the same type of wood porosity. Our results suggest that wood growth and leaf phenology are less well connected than previously thought. Linear models showed that temperature is the dominant driver of wood growth phenology, but with climate zone also having an effect, especially at the start of the growing season. Drought conditions, on the other hand, have a larger effect on the timing of wood growth cessation. Our comprehensive analysis represents the first large regional assessment of wood growth phenology in common European deciduous tree species, providing not only new fundamental insights but also a unique dataset for future modelling applications.
  •  
9.
  • Drobyshev, Igor (författare)
  • Trends and patterns in annually burned forest areas and fire weather across the European boreal zone in the 20th and early 21st centuries
  • 2021
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 306
  • Tidskriftsartikel (refereegranskat)abstract
    • Fire remains one of the main natural disturbance factors in the European boreal zone and understanding climatic forcing on fire activity is important for projecting effects of climate change on ecosystem services in this region. We analyzed records of annually burned areas in 16 administrative regions of the European boreal zone (countries or administrative units within countries) and fire weather variability to test for their spatio-temporal patterns over the 1901-2017 period.Over the 1992-2017 period, the region exhibited large variability in forest fire activity with the fire cycles varying from similar to 1600 (St. Petersburg region) to similar to 37000 years (Finland). The clustering of administrative units in respect to their burned area, suggested the presence of sub-regions with synchronous annual variability in burned areas. Large fire years (LFYs) in each of the clusters were associated with the development of the high pressure cell over or in immediate proximity of the regions in question in July, indicating climatic forcing of LFYs. Contingency analysis indicated that there was no long-term trend in the synchrony of LFYs observed simultaneously in several administrative units. We documented a trend towards higher values of Monthly Drought Code (MDC) for the months of April and May in the western (April) and northern (April and May) sections. The significant positive correlation between biome-wide fire activity index and June SNAO (Summer North Atlantic Oscillation) (r = 0.53) pointed to the importance of large-scale atmospheric circulation, in particular the summer European blocking pattern, in controlling forest fires across EBZ. The forest fire activity of the European boreal zone remains strongly connected to the annual climate variability. Higher frequency of strongly positive SNAO states in the future will likely synchronize years with a large area burned across the European boreal zone.
  •  
10.
  • Greiser, Caroline, 1987-, et al. (författare)
  • Higher soil moisture increases microclimate temperature buffering in temperate broadleaf forests
  • 2024
  • Ingår i: Agricultural and Forest Meteorology. - 0168-1923 .- 1873-2240. ; 345
  • Tidskriftsartikel (refereegranskat)abstract
    • Forest canopies can buffer the understory against temperature extremes, often creating cooler microclimates during warm summer days compared to temperatures outside the forest. The buffering of maximum temperatures in the understory results from a combination of canopy shading and air cooling through soil water evaporation and plant transpiration. Therefore, buffering capacity of forests depends on canopy cover and soil moisture content, which are increasingly affected by more frequent and severe canopy disturbances and soil droughts. The extent to which this buffering will be maintained in future conditions is unclear due to the lack of understanding about the relationship between soil moisture and air temperature buffering in interaction with canopy cover and topographic settings. We explored how soil moisture variability affects temperature offsets between outside and inside the forest on a daily basis, using temperature and soil moisture data from 54 sites in temperate broadleaf forests in Central Europe over four climatically different summer seasons. Daily maximum temperatures in forest understories were on average 2 °C cooler than outside temperatures. The buffering of understory temperatures was more effective when soil moisture was higher, and the offsets were more sensitive to soil moisture on sites with drier soils and on sun-exposed slopes with high topographic heat load. Based on these results, the soil–water limitation to forest temperature buffering will become more prevalent under future warmer conditions and will likely lead to changes in understory communities. Thus, our results highlight the urgent need to include soil moisture in models and predictions of forest microclimate, understory biodiversity and tree regeneration, to provide a more precise estimate of the effects of climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 59
Typ av publikation
tidskriftsartikel (58)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (59)
Författare/redaktör
Peichl, Matthias (8)
Kljun, Natascha (7)
Chi, Jinshu (5)
Nilsson, Mats (4)
De Frenne, Pieter (4)
Zhang, Wenxin (4)
visa fler...
Zhao, Peng (4)
Hedwall, Per-Ola (4)
Tagesson, Torbern (3)
Diekmann, Martin (3)
Plue, Jan (3)
Verheyen, Kris (3)
Montagnani, Leonardo (3)
Lindroth, Anders (3)
Lehner, Irene (3)
Vico, Giulia (3)
Lenoir, Jonathan (3)
Vangansbeke, Pieter (3)
Kelly, Julia (3)
Mammarella, Ivan (3)
Klosterhalfen, Anne (3)
Orczewska, Anna (3)
Laudon, Hjalmar (2)
Brunet, Jörg (2)
Cousins, Sara A. O. (2)
Näsholm, Torgny (2)
Jönsson, Anna Maria (2)
Lundmark, Tomas (2)
Linder, Sune (2)
Klemedtsson, Leif, 1 ... (2)
Peñuelas, Josep (2)
Mölder, Meelis (2)
Weslien, Per, 1963 (2)
Tang, Jing (2)
Fang, Keyan (2)
Marshall, John (2)
Carrara, Arnaud (2)
Desai, Ankur R. (2)
Helbig, Manuel (2)
Jansson, Per-Erik. (2)
Vestin, Patrik (2)
Vanneste, Thomas (2)
Lim, Hyungwoo (2)
Campbell, David (2)
Nilsson, Mats B. (2)
Vesala, Timo (2)
Wu, Mousong (2)
Fu, Yongshuo H. (2)
Wu, Zhaofei (2)
Calders, Kim (2)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (28)
Lunds universitet (21)
Stockholms universitet (8)
Göteborgs universitet (5)
Linnéuniversitetet (3)
Umeå universitet (2)
visa fler...
Kungliga Tekniska Högskolan (2)
Uppsala universitet (2)
Jönköping University (1)
Chalmers tekniska högskola (1)
RISE (1)
visa färre...
Språk
Engelska (59)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (54)
Lantbruksvetenskap (29)
Teknik (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy