SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0175 7598 OR L773:1432 0614 srt2:(2020-2024)"

Sökning: L773:0175 7598 OR L773:1432 0614 > (2020-2024)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • An, Y., et al. (författare)
  • Therapeutic efficacy of new botulinum toxin identified in CCUG 7968 strain
  • 2021
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer Science and Business Media LLC. - 0175-7598 .- 1432-0614. ; 105, s. 8727-8737
  • Tidskriftsartikel (refereegranskat)abstract
    • Botulinum neurotoxin type A (BoNT/A) induces muscle atrophy by cleaving synaptosomal-associated protein 25. Thus, BoNT/A has been actively utilized for the treatment of masseter and gastrocnemius hypertrophy. In this study, INI101 toxin was newly identified from the CCUG 7968 strain, and its therapeutic efficacy was evaluated both in vitro and in vivo. The INI101 toxin showed identical genetic sequence, amino acid sequence, and protein subunit composition to BoNT/A produced from strain Hall A. Electromyography (EMG), and immunofluorescence staining demonstrated that INI101 (at 2 - 8 U/rat) effectively blocked the neuromuscular junction with no toxicity in a rat model. The EMG results showed INI101 toxin-induced weight loss and volume reduction of the gastrocnemius, similar to the effects of Botox (R) (BTX). Histological and immunofluorescence staining was consistent with this EMG result, showing that INI101 toxin caused muscle fiber reduction in the gastrocnemius. Notably, INI101 toxin diffused less into adjacent muscle tissue than BTX, indicating that INI101 toxin may reduce potential side effects due to diffusion into normal tissues. INI101 toxin isolated from the novel strain CCUG 7968 is a newly identified meaningful biopharmaceutical comparable to the conventional BoNT/A in the medical field.
  •  
2.
  • Barbi, Florian (författare)
  • Datamining and functional environmental genomics reassess the phylogenetics and functional diversity of fungal monosaccharide transporters
  • 2021
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer Science and Business Media LLC. - 0175-7598 .- 1432-0614. ; 105, s. 647-660
  • Tidskriftsartikel (refereegranskat)abstract
    • Sugar transporters are essential components of carbon metabolism and have been extensively studied to control sugar uptake by yeasts and filamentous fungi used in fermentation processes. Based on published information on characterized fungal sugar porters, we show that this protein family encompasses phylogenetically distinct clades. While several clades encompass transporters that seemingly specialized on specific "sugar-related" molecules (e.g., myo-inositol, charged sugar analogs), others include mostly either mono- or di/oligosaccharide low-specificity transporters. To address the issue of substrate specificity of sugar transporters, that protein primary sequences do not fully reveal, we screened "multi-species" soil eukaryotic cDNA libraries for mannose transporters, a sugar that had never been used to select transporters. We obtained 19 environmental transporters, mostly from Basidiomycota and Ascomycota. Among them, one belonged to the unusual "Fucose H+ Symporter" family, which is only known in Fungi for a rhamnose transporter in Aspergillus niger. Functional analysis of the 19 transporters by expression in yeast and for two of them in Xenopus laevis oocytes for electrophysiological measurements indicated that most of them showed a preference for d-mannose over other tested d-C6 (glucose, fructose, galactose) or d-C5 (xylose) sugars. For the several glucose and fructose-negative transporters, growth of the corresponding recombinant yeast strains was prevented on mannose in the presence of one of these sugars that may act by competition for the binding site. Our results highlight the potential of environmental genomics to figure out the functional diversity of key fungal protein families and that can be explored in a context of biotechnology.
  •  
3.
  • Carbonaro, Miriam, et al. (författare)
  • Exploration of three Dyadobacter fermentans enzymes uncovers molecular activity determinants in CE15
  • 2024
  • Ingår i: Applied Microbiology and Biotechnology. - 1432-0614 .- 0175-7598. ; 108:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucuronoyl esterases (GEs) are serine-type hydrolase enzymes belonging to carbohydrate esterase family 15 (CE15), and they play a central role in the reduction of recalcitrance in plant cell walls by cleaving ester linkages between glucuronoxylan and lignin in lignocellulose. Recent studies have suggested that bacterial CE15 enzymes are more heterogeneous in terms of sequence, structure, and substrate preferences than their fungal counterparts. However, the sequence space of bacterial GEs has still not been fully explored, and further studies on diverse enzymes could provide novel insights into new catalysts of biotechnological interest. To expand our knowledge on this family of enzymes, we investigated three unique CE15 members encoded by Dyadobacter fermentans NS114T, a Gram-negative bacterium found endophytically in maize/corn (Zea mays). The enzymes are dissimilar, sharing ≤ 39% sequence identity to each other' and were considerably different in their activities towards synthetic substrates. Combined analysis of their primary sequences and structural predictions aided in establishing hypotheses regarding specificity determinants within CE15, and these were tested using enzyme variants attempting to shift the activity profiles. Together, the results expand our existing knowledge of CE15, shed light into the molecular determinants defining specificity, and support the recent thesis that diverse GEs encoded by a single microorganism may have evolved to fulfil different physiological functions. KEY POINTS: • D. fermentans encodes three CE15 enzymes with diverse sequences and specificities • The Region 2 inserts in bacterial GEs may directly influence enzyme activity • Rational amino acid substitutions improved the poor activity of the DfCE15A enzyme.
  •  
4.
  • Cheng, G., et al. (författare)
  • Microbial community development during syngas methanation in a trickle bed reactor with various nutrient sources
  • 2022
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer Science and Business Media Deutschland GmbH. - 0175-7598 .- 1432-0614. ; 106, s. 5317-5333
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial community development within an anaerobic trickle bed reactor (TBR) during methanation of syngas (56% H2, 30% CO, 14% CO2) was investigated using three different nutrient media: defined nutrient medium (241 days), diluted digestate from a thermophilic co-digestion plant operating with food waste (200 days) and reject water from dewatered digested sewage sludge at a wastewater treatment plant (220 days). Different TBR operating periods showed slightly different performance that was not clearly linked to the nutrient medium, as all proved suitable for the methanation process. During operation, maximum syngas load was 5.33 L per L packed bed volume (pbv) & day and methane (CH4) production was 1.26 L CH4/Lpbv/d. Microbial community analysis with Illumina Miseq targeting 16S rDNA revealed high relative abundance (20–40%) of several potential syngas and acetate consumers within the genera Sporomusa, Spirochaetaceae, Rikenellaceae and Acetobacterium during the process. These were the dominant taxa except in a period with high flow rate of digestate from the food waste plant. The dominant methanogen in all periods was a member of the genus Methanobacterium, while Methanosarcina was also observed in the carrier community. As in reactor effluent, the dominant bacterial genus in the carrier was Sporomusa. These results show that syngas methanation in TBR can proceed well with different nutrient sources, including undefined medium of different origins. Moreover, the dominant syngas community remained the same over time even when non-sterilised digestates were used as nutrient medium. Key points: •Independent of nutrient source, syngas methanation above 1 L/Lpbv/D was achieved. •Methanobacterium and Sporomusa were dominant genera throughout the process. •Acetate conversion proceeded via both methanogenesis and syntrophic acetate oxidation. Graphical abstract: [Figure not available: see fulltext.] © 2022, The Author(s).
  •  
5.
  • David Mwakilili, Aneth (författare)
  • Complete genome sequence and epigenetic profile of Bacillus velezensis UCMB5140 used for plant and crop protection in comparison with other plant-associated Bacillusstrains
  • 2020
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer Science and Business Media LLC. - 0175-7598 .- 1432-0614. ; 104, s. 7643-7656
  • Tidskriftsartikel (refereegranskat)abstract
    • The application of biocontrol biopesticides based on plant growth-promoting rhizobacteria (PGPR), particularly members of the genusBacillus,is considered a promising perspective to make agricultural practices sustainable and ecologically safe. Recent advances in genome sequencing by third-generation sequencing technologies, e.g., Pacific Biosciences' Single Molecule Real-Time (PacBio SMRT) platform, have allowed researchers to gain deeper insights into the molecular and genetic mechanisms of PGPR activities, and to compare whole genome sequences and global patterns of epigenetic modifications. In the current work, this approach was used to sequence and compare fourBacillusstrains that exhibited various PGPR activities including the strain UCMB5140, which is used in the commercial biopesticide Phytosubtil. Whole genome comparison and phylogenomic inference assigned the strain UCMB5140 to the speciesBacillus velezensis. Strong biocontrol activities of this strain were confirmed in several bioassays. Several factors that affect the evolution of active PGPRB. velezensisstrains were identified: (1) horizontal acquisition of novel non-ribosomal peptide synthetases (NRPS) and adhesion genes; (2) rearrangements of functional modules of NRPS genes leading to strain specific combinations of their encoded products; (3) gain and loss of methyltransferases that can cause global alterations in DNA methylation patterns, which eventually may affect gene expression and regulate transcription. Notably, we identified a horizontally transferred NRPS operon encoding an uncharacterized polypeptide antibiotic inB. velezensisUCMB5140. Other horizontally acquired genes comprised a possible adhesin and a methyltransferase, which may explain the strain-specific methylation pattern of the chromosomal DNA of UCMB5140.
  •  
6.
  • Ekholm, Jennifer, 1992, et al. (författare)
  • Microbiome structure and function in parallel full-scale aerobic granular sludge and activated sludge processes
  • 2024
  • Ingår i: Applied Microbiology and Biotechnology. - 1432-0614 .- 0175-7598. ; 108:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract: Aerobic granular sludge (AGS) and conventional activated sludge (CAS) are two different biological wastewater treatment processes. AGS consists of self-immobilised microorganisms that are transformed into spherical biofilms, whereas CAS has floccular sludge of lower density. In this study, we investigated the treatment performance and microbiome dynamics of two full-scale AGS reactors and a parallel CAS system at a municipal WWTP in Sweden. Both systems produced low effluent concentrations, with some fluctuations in phosphate and nitrate mainly due to variations in organic substrate availability. The microbial diversity was slightly higher in the AGS, with different dynamics in the microbiome over time. Seasonal periodicity was observed in both sludge types, with a larger shift in the CAS microbiome compared to the AGS. Groups important for reactor function, such as ammonia-oxidising bacteria (AOB), nitrite-oxidising bacteria (NOB), polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs), followed similar trends in both systems, with higher relative abundances of PAOs and GAOs in the AGS. However, microbial composition and dynamics differed between the two systems at the genus level. For instance, among PAOs, Tetrasphaera was more prevalent in the AGS, while Dechloromonas was more common in the CAS. Among NOB, Ca. Nitrotoga had a higher relative abundance in the AGS, while Nitrospira was the main nitrifier in the CAS. Furthermore, network analysis revealed the clustering of the various genera within the guilds to modules with different temporal patterns, suggesting functional redundancy in both AGS and CAS. Key points: • Microbial community succession in parallel full-scale aerobic granular sludge (AGS) and conventional activated sludge (CAS) processes. • Higher periodicity in microbial community structure in CAS compared to in AGS. • Similar functional groups between AGS and CAS but different composition and dynamics at genus level. Graphical abstract: (Figure presented.).
  •  
7.
  • Hero, Johan S., et al. (författare)
  • Endo-xylanases from Cohnella sp. AR92 aimed at xylan and arabinoxylan conversion into value-added products
  • 2021
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer Science and Business Media LLC. - 1432-0614 .- 0175-7598. ; 105:18, s. 6759-6778
  • Tidskriftsartikel (refereegranskat)abstract
    • The genus Cohnella belongs to a group of Gram-positive endospore-forming bacteria within the Paenibacillaceae family. Although most species were described as xylanolytic bacteria, the literature still lacks some key information regarding their repertoire of xylan-degrading enzymes. The whole genome sequence of an isolated xylan-degrading bacterium Cohnella sp. strain AR92 was found to contain five genes encoding putative endo-1,4-β-xylanases, of which four were cloned, expressed, and characterized to better understand the contribution of the individual endo-xylanases to the overall xylanolytic properties of strain AR92. Three of the enzymes, CoXyn10A, CoXyn10C, and CoXyn11A, were shown to be effective at hydrolyzing xylans-derived from agro-industrial, producing oligosaccharides with substrate conversion values of 32.5%, 24.7%, and 10.6%, respectively, using sugarcane bagasse glucuronoarabinoxylan and of 29.9%, 19.1%, and 8.0%, respectively, using wheat bran-derived arabinoxylan. The main reaction products from GH10 enzymes were xylobiose and xylotriose, whereas CoXyn11A produced mostly xylooligosaccharides (XOS) with 2 to 5 units of xylose, often substituted, resulting in potentially prebiotic arabinoxylooligosaccharides (AXOS). The endo-xylanases assay displayed operational features (temperature optima from 49.9 to 50.4 °C and pH optima from 6.01 to 6.31) fitting simultaneous xylan utilization. Homology modeling confirmed the typical folds of the GH10 and GH11 enzymes, substrate docking studies allowed the prediction of subsites (- 2 to + 1 in GH10 and - 3 to + 1 in GH11) and identification of residues involved in ligand interactions, supporting the experimental data. Overall, the Cohnella sp. AR92 endo-xylanases presented significant potential for enzymatic conversion of agro-industrial by-products into high-value products.Key points• Cohnella sp. AR92 genome encoded five potential endo-xylanases.• Cohnella sp. AR92 enzymes produced xylooligosaccharides from xylan, with high yields.• GH10 enzymes from Cohnella sp. AR92 are responsible for the production of X2 and X3 oligosaccharides.• GH11 from Cohnella sp. AR92 contributes to the overall xylan degradation by producing substituted oligosaccharides.
  •  
8.
  • Hunold, A., et al. (författare)
  • Assembly of a Rieske non-heme iron oxygenase multicomponent system from Phenylobacterium immobile E DSM 1986 enables pyrazon cis-dihydroxylation in E. coli
  • 2021
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer Science and Business Media Deutschland GmbH. - 0175-7598 .- 1432-0614. ; 105:5, s. 2003-2015
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract: Phenylobacterium immobile strain E is a soil bacterium with a striking metabolism relying on xenobiotics, such as the herbicide pyrazon, as sole carbon source instead of more bioavailable molecules. Pyrazon is a heterocyclic aromatic compound of environmental concern and its biodegradation pathway has only been reported in P. immobile. The multicomponent pyrazon oxygenase (PPO), a Rieske non-heme iron oxygenase, incorporates molecular oxygen at the 2,3 position of the pyrazon phenyl moiety as first step of degradation, generating a cis-dihydrodiendiol. The aim of this work was to identify the genes encoding for each one of the PPO components and enable their functional assembly in Escherichia coli. P. immobile strain E genome sequencing revealed genes encoding for RO components, such as ferredoxin-, reductase-, α- and β-subunits of an oxygenase. Though, P. immobile E displays three prominent differences with respect to the ROs currently characterized: (1) an operon-like organization for PPO is absent, (2) all the elements are randomly scattered in its DNA, (3) not only one, but 19 different α-subunits are encoded in its genome. Herein, we report the identification of the PPO components involved in pyrazon cis-dihydroxylation in P. immobile, its appropriate assembly, and its functional reconstitution in E. coli. Our results contributes with the essential missing pieces to complete the overall elucidation of the PPO from P. immobile. Key points: • Phenylobacterium immobile E DSM 1986 harbors the only described pyrazon oxygenase (PPO). • We elucidated the genes encoding for all PPO components. • Heterologous expression of PPO enabled pyrazon dihydroxylation in E. coli JW5510. 
  •  
9.
  • Lopes, Helberth Júnnior Santos, et al. (författare)
  • C/N ratio and carbon source-dependent lipid production profiling in Rhodotorula toruloides
  • 2020
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer Science and Business Media LLC. - 1432-0614 .- 0175-7598. ; 104:6, s. 2639-2649
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial oils are lipids produced by oleaginous microorganisms, which can be used as a potential feedstock for oleochemical production. The oleaginous yeast Rhodotorula toruloides can co-produce microbial oils and high-value compounds from low-cost substrates, such as xylose and acetic acid (from hemicellulosic hydrolysates) and raw glycerol (a byproduct of biodiesel production). One step towards economic viability is identifying the best conditions for lipid production, primarily the most suitable carbon-to-nitrogen ratio (C/N). Here, we aimed to identify the best conditions and cultivation mode for lipid production by R. toruloides using various low-cost substrates and a range of C/N ratios (60, 80, 100, and 120). Turbidostat mode was used to achieve a steady state at the maximal specific growth rate and to avoid continuously changing environmental conditions (i.e., C/N ratio) that inherently occur in batch mode. Regardless of the carbon source, higher C/N ratios increased lipid yields (up to 60% on xylose at a C/N of 120) but decreased the specific growth rate. Growth on glycerol resulted in the highest specific growth and lipid production (0.085 g lipids/gDW*h) rates at C/Ns between 60 and 100. We went on to study lipid production using glycerol in both batch and fed-batch modes, which resulted in lower specific lipid production rates compared with turbisdostat, however, fed batch is superior in terms of biomass production and lipid titers. By combining the data we obtained in these experiments with a genome-scale metabolic model of R. toruloides, we identified targets for improvements in lipid production that could be carried out either by metabolic engineering or process optimization.
  •  
10.
  • NGO, NGOC, et al. (författare)
  • Chemoenzymatic synthesis of the pH responsive surfactant octyl β-D-glucopyranoside uronic acid
  • 2020
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer Science and Business Media LLC. - 1432-0614 .- 0175-7598. ; 104, s. 1055-1062
  • Tidskriftsartikel (refereegranskat)abstract
    • Methodology was developed to expand the range of benign alkyl glycoside surfactants to include also anionic types. This was demonstrated possible through conversion of the glycoside to its carboxyl derivative. Specifically, octyl β-D-glucopyranoside (OG) was oxidized to the corresponding uronic acid (octyl β-D-glucopyranoside uronic acid, OG-COOH) using the catalyst system T. versicolor laccase/2,2,6,6-tetramethylpiperidinyloxy (TEMPO) and oxygen from air as oxidant. The effects of oxygen supply methodology, concentrations of laccase, TEMPO and OG as well as reaction temperature were evaluated. At 10 mM substrate concentration, the substrate was almost quantitatively converted into product and even at a substrate concentration of 60 mM, 85 % conversion was reached within 24 hours. The surfactant properties of OG-COOH were markedly dependent on pH. Foaming was only observed at low pH, while no foam was formed at pH values above 5.0. Thus, OG-COOH can be an attractive low-foaming surfactant, for example for cleaning applications and emulsification, in a wide pH range (pH 1.5-10.0).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (16)
Typ av innehåll
refereegranskat (16)
Författare/redaktör
Park, W. (1)
Kim, Y. J. (1)
Kim, M. (1)
Kim, S. (1)
Persson, Frank, 1970 (1)
Wilen, Britt-Marie, ... (1)
visa fler...
Modin, Oskar, 1980 (1)
Nielsen, Jens B, 196 ... (1)
Cheng, G. (1)
Nordberg Karlsson, E ... (1)
Grey, Carl (1)
Moore, Edward R.B. 1 ... (1)
Li, Jin-Ping (1)
Pizzul, Leticia (1)
Woo, J. (1)
Kerkhoven, Eduard, 1 ... (1)
Adlercreutz, Patrick (1)
Schnürer, Anna (1)
Nordberg, Åke (1)
Linares-Pastén, Javi ... (1)
Yim, H (1)
Syrén, Per-Olof (1)
Olsson, Henrik (1)
Siewers, Verena, 197 ... (1)
van Loosdrecht, Mark ... (1)
Zhang, Li (1)
An, Y (1)
Kim, C. S. (1)
Lee, E. K. (1)
Oh, H. J. (1)
Han, J. H. (1)
Yoo, E. (1)
Jung, J. Y. (1)
Joyce, Alyssa (1)
Mazurkewich, Scott, ... (1)
Larsbrink, Johan, 19 ... (1)
Wang, Jian (1)
Fiorentino, Gabriell ... (1)
Lahtvee, Petri-Jaan, ... (1)
Passoth, Volkmar (1)
Barbi, Florian (1)
Ding, Kan (1)
de Blois, Mark (1)
Gustavsson, David (1)
Posselt, Malte (1)
Sauvage, Justine (1)
Bonturi, Nemailla (1)
Miranda, Everson Alv ... (1)
Ekholm, Jennifer, 19 ... (1)
Zhang, Jingyu (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (4)
Sveriges Lantbruksuniversitet (4)
Göteborgs universitet (2)
Kungliga Tekniska Högskolan (2)
Lunds universitet (2)
Uppsala universitet (1)
visa fler...
Stockholms universitet (1)
RISE (1)
visa färre...
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Teknik (6)
Medicin och hälsovetenskap (3)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy