SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0272 5428 OR L773:9781728196213 OR L773:9781728196220 srt2:(2020-2023)"

Sökning: L773:0272 5428 OR L773:9781728196213 OR L773:9781728196220 > (2020-2023)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De Rezende, Susanna F., et al. (författare)
  • KRW composition theorems via lifting
  • 2020
  • Ingår i: Proceedings - 2020 IEEE 61st Annual Symposium on Foundations of Computer Science, FOCS 2020. - 0272-5428. - 9781728196213 - 9781728196220 ; 2020-November, s. 43-49
  • Konferensbidrag (refereegranskat)abstract
    • One of the major open problems in complexity theory is proving super-logarithmic lower bounds on the depth of circuits (i.e., mathrm{P} nsubseteq text{NC}{1}). Karchmer, Raz, and Wigderson [13] suggested to approach this problem by proving that depth complexity behaves'as expected' with respect to the composition of functions f diamond g. They showed that the validity of this conjecture would imply that mathrm{P} nsubseteq text{NC}{1}. Several works have made progress toward resolving this conjecture by proving special cases. In particular, these works proved the KRW conjecture for every outer function, but only for few inner functions. Thus, it is an important challenge to prove the KRW conjecture for a wider range of inner functions. In this work, we extend significantly the range of inner functions that can be handled. First, we consider the monotone version of the KRW conjecture. We prove it for every monotone inner function whose depth complexity can be lower bounded via a query-to-communication lifting theorem. This allows us to handle several new and well-studied functions such as the s-t-connectivity, clique, and generation functions. In order to carry this progress back to the non-monotone setting, we introduce a new notion of semi-monotone composition, which combines the non-monotone complexity of the outer function with the monotone complexity of the inner function. In this setting, we prove the KRW conjecture for a similar selection of inner functions, but only for a specific choice of the outer function f.
  •  
2.
  • De Rezende, Susanna, et al. (författare)
  • Lifting with simple gadgets and applications to circuit and proof complexity
  • 2020
  • Ingår i: Proceedings - 2020 IEEE 61st Annual Symposium on Foundations of Computer Science, FOCS 2020. - 0272-5428. - 9781728196213 - 9781728196220 ; 2020-November, s. 24-30
  • Konferensbidrag (refereegranskat)abstract
    • We significantly strengthen and generalize the theorem lifting Nullstellensatz degree to monotone span program size by Pitassi and Robere (2018) so that it works for any gadget with high enough rank, in particular, for useful gadgets such as equality and greater-than. We apply our generalized theorem to solve three open problems: •We present the first result that demonstrates a separation in proof power for cutting planes with unbounded versus polynomially bounded coefficients. Specifically, we exhibit CNF formulas that can be refuted in quadratic length and constant line space in cutting planes with unbounded coefficients, but for which there are no refutations in subexponential length and subpolynomial line space if coefficients are restricted to be of polynomial magnitude. •We give the first explicit separation between monotone Boolean formulas and monotone real formulas. Specifically, we give an explicit family of functions that can be computed with monotone real formulas of nearly linear size but require monotone Boolean formulas of exponential size. Previously only a non-explicit separation was known. •We give the strongest separation to-date between monotone Boolean formulas and monotone Boolean circuits. Namely, we show that the classical GEN problem, which has polynomial-size monotone Boolean circuits, requires monotone Boolean formulas of size 2{Omega(n text{polylog}(n))}. An important technical ingredient, which may be of independent interest, is that we show that the Nullstellensatz degree of refuting the pebbling formula over a DAG G over any field coincides exactly with the reversible pebbling price of G. In particular, this implies that the standard decision tree complexity and the parity decision tree complexity of the corresponding falsified clause search problem are equal. This is an extended abstract. The full version of the paper is available at https://arxiv.org/abs/2001.02144.
  •  
3.
  • Conneryd, Jonas, et al. (författare)
  • Graph Colouring Is Hard on Average for Polynomial Calculus and Nullstellensatz
  • 2023
  • Ingår i: Proceedings - 2023 IEEE 64th Annual Symposium on Foundations of Computer Science, FOCS 2023. - 0272-5428. - 9798350318944 ; , s. 1-11
  • Konferensbidrag (refereegranskat)abstract
    • We prove that polynomial calculus (and hence also Nullstellensatz) over any field requires linear degree to refute that sparse random regular graphs, as well as sparse Erdős-Rényi random graphs, are 3-colourable.
  •  
4.
  • De Rezende, Susanna F., et al. (författare)
  • Clique Is Hard on Average for Unary Sherali-Adams
  • 2023
  • Ingår i: Proceedings - 2023 IEEE 64th Annual Symposium on Foundations of Computer Science, FOCS 2023. - 0272-5428. - 9798350318944 ; , s. 12-25
  • Konferensbidrag (refereegranskat)abstract
    • We prove that unary Sherali-Adams requires proofs of size nΩ(d) to rule out the existence of an nΘ(1)-clique in Erdős-Rényi random graphs whose maximum clique is of size d ≤ 2 log n. This lower bound is tight up to the multiplicative constant in the exponent. We obtain this result by introducing a technique inspired by pseudo-calibration which may be of independent interest. The technique involves defining a measure on monomials that precisely captures the contribution of a monomial to a refutation. This measure intuitively captures progress and should have further applications in proof complexity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy