SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0340 6997 OR L773:1432 105X OR L773:1619 7070 OR L773:1619 7089 srt2:(2005-2009)"

Sökning: L773:0340 6997 OR L773:1432 105X OR L773:1619 7070 OR L773:1619 7089 > (2005-2009)

  • Resultat 1-10 av 125
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bajc, Marika, et al. (författare)
  • EANM guidelines for ventilation/perfusion scintigraphy : Part 1. Pulmonary imaging with ventilation/perfusion single photon emission tomography.
  • 2009
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 36:8, s. 1356-1370
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulmonary embolism (PE) can only be diagnosed with imaging techniques, which in practice is performed using ventilation/perfusion scintigraphy (V/P(SCAN)) or multidetector computed tomography of the pulmonary arteries (MDCT). The epidemiology, natural history, pathophysiology and clinical presentation of PE are briefly reviewed. The primary objective of Part 1 of the Task Group's report was to develop a methodological approach to and interpretation criteria for PE. The basic principle for the diagnosis of PE based upon V/P(SCAN) is to recognize lung segments or subsegments without perfusion but preserved ventilation, i.e. mismatch. Ventilation studies are in general performed after inhalation of Krypton or technetium-labelled aerosol of diethylene triamine pentaacetic acid (DTPA) or Technegas. Perfusion studies are performed after intravenous injection of macroaggregated human albumin. Radiation exposure using documented isotope doses is 1.2-2 mSv. Planar and tomographic techniques (V/P(PLANAR) and V/P(SPECT)) are analysed. V/P(SPECT) has higher sensitivity and specificity than V/P(PLANAR). The interpretation of either V/P(PLANAR) or V/P(SPECT) should follow holistic principles rather than obsolete probabilistic rules. PE should be reported when mismatch of more than one subsegment is found. For the diagnosis of chronic PE, V/P(SCAN) is of value. The additional diagnostic yield from V/P(SCAN) includes chronic obstructive lung disease (COPD), heart failure and pneumonia. Pitfalls in V/P(SCAN) interpretation are considered. V/P(SPECT) is strongly preferred to V/P(PLANAR) as the former permits the accurate diagnosis of PE even in the presence of comorbid diseases such as COPD and pneumonia. Technegas is preferred to DTPA in patients with COPD.
  •  
2.
  • Bajc, Marika, et al. (författare)
  • EANM guidelines for ventilation/perfusion scintigraphy : Part 2. Algorithms and clinical considerations for diagnosis of pulmonary emboli with V/P(SPECT) and MDCT.
  • 2009
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089.
  • Tidskriftsartikel (refereegranskat)abstract
    • As emphasized in Part 1 of these guidelines, the diagnosis of pulmonary embolism (PE) is confirmed or refuted using ventilation/perfusion scintigraphy (V/P(SCAN)) or multidetector computed tomography of the pulmonary arteries (MDCT). To reduce the costs, the risks associated with false-negative and false-positive diagnoses, and unnecessary radiation exposure, preimaging assessment of clinical probability is recommended. Diagnostic accuracy is approximately equal for MDCT and planar V/P(SCAN) and better for tomography (V/P(SPECT)). V/P(SPECT) is feasible in about 99% of patients, while MDCT is often contraindicated. As MDCT is more readily available, access to both techniques is vital for the diagnosis of PE. V/P(SPECT) gives an effective radiation dose of 1.2-2 mSv. For V/P(SPECT), the effective dose is about 35-40% and the absorbed dose to the female breast 4% of the dose from MDCT performed with a dose-saving protocol. V/P(SPECT) is recommended as a first-line procedure in patients with suspected PE. It is particularly favoured in young patients, especially females, during pregnancy, and for follow-up and research.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Brans, B., et al. (författare)
  • Clinical radionuclide therapy dosimetry: the quest for the "Holy Gray"
  • 2007
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 34:5, s. 772-786
  • Forskningsöversikt (refereegranskat)abstract
    • Introduction Radionuclide therapy has distinct similarities to, but also profound differences from external radiotherapy. Review This review discusses techniques and results of previously developed dosimetry methods in thyroid carcinoma, neuro-endocrine tumours, solid tumours and lymphoma. In each case, emphasis is placed on the level of evidence and practical applicability. Although dosimetry has been of enormous value in the preclinical phase of radiopharmaceutical development, its clinical use to optimise administered activity on an individual patient basis has been less evident. In phase I and II trials, dosimetry may be considered an inherent part of therapy to establish the maximum tolerated dose and dose-response relationship. To prove that dosimetry-based radionuclide therapy is of additional benefit over fixed dosing or dosing per kilogram body weight, prospective randomised phase III trials with appropriate end points have to be undertaken. Data in the literature which underscore the potential of dosimetry to avoid under- and overdosing and to standardise radionuclide therapy methods internationally are very scarce. Developments In each section, particular developments and insights into these therapies are related to opportunities for dosimetry. The recent developments in PET and PET/CT imaging, including micro-devices for animal research, and molecular medicine provide major challenges for innovative therapy and dosimetry techniques. Furthermore, the increasing scientific interest in the radiobiological features specific to radionuclide therapy will advance our ability to administer this treatment modality optimally.
  •  
7.
  • Carlsson, Jörgen, et al. (författare)
  • Requirements regarding dose rate and exposure time for killing of tumour cells in beta particle radionuclide therapy
  • 2006
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 33:10, s. 1185-1195
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The purpose of this study was to identify combinations of dose rate and exposure time that have the potential to provide curative treatment with targeted radionuclide therapy applying low dose rate beta irradiation. Methods: Five tumour cell lines, U-373MG and U-118MG gliomas, HT-29 colon carcinoma, A-431 cervical squamous carcinoma and SKBR-3 breast cancer, were used. An experimental model with 10(5) tumour cells in each sample was irradiated with low dose rate beta particles. The criterion for successful treatment was absence of recovery of cells during a follow-up period of 3 months. The initial dose rates were in the range 0.1-0.8 Gy/h, and the cells were continuously exposed for 1, 3 or 7 days. These combinations covered dose rates and doses achievable in targeted radionuclide therapy. Results: Continuous irradiation with dose rates of 0.2-0.3 and 0.4-0.6 Gy/h for 7 and 3 days, respectively, could kill all cells in each tumour cell sample. These treatments gave total radiation doses of 30-40 Gy. However, when exposed for just 24 h with about 0.8 Gy/h, only the SKBR-3 cells were successfully treated; all the other cell types recovered. There were large cell type-dependent variations in the growth delay patterns for the cultures that recovered. The U-118MG cells were most resistant and the U-373MG and SKBR-3 cells most sensitive to the treatments. The HT-29 and A-431 cells were intermediate. Conclusion: The results serve as a guideline for the combinations of dose rate and exposure time necessary to kill tumour cells when applying low dose rate beta irradiation. The shift from recovery to "cure" fell within a narrow range of dose rate and exposure time combinations.
  •  
8.
  • Chakera, Annette H., et al. (författare)
  • EANM-EORTC general recommendations for sentinel node diagnostics in melanoma
  • 2009
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 36:10, s. 1713-1742
  • Forskningsöversikt (refereegranskat)abstract
    • The accurate diagnosis of a sentinel node in melanoma includes a sequence of procedures from different medical specialities (nuclear medicine, surgery, oncology, and pathology). The items covered are presented in 11 sections and a reference list: (1) definition of a sentinel node, (2) clinical indications, (3) radiopharmaceuticals and activity injected, (4) dosimetry, (5) injection technique, (6) image acquisition and interpretation, (7) report and display, ( 8) use of dye, ( 9) gamma probe detection, (10) surgical techniques in sentinel node biopsy, and (11) pathological evaluation of melanoma-draining sentinel lymph nodes. If specific recommendations given cannot be based on evidence from original, scientific studies, referral is given to "general consensus" and similar expressions. The recommendations are designed to assist in the practice of referral to, performance, interpretation and reporting of all steps of the sentinel node procedure in the hope of setting state-of-the-art standards for good-quality evaluation of possible spread to the lymphatic system in intermediate-to-high risk melanoma without clinical signs of dissemination.
  •  
9.
  • Ciofetta, Gianclaudio, et al. (författare)
  • Guidelines for lung scintigraphy in children.
  • 2007
  • Ingår i: European journal of nuclear medicine and molecular imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 34:9, s. 1518-26
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this set of guidelines is to help the nuclear medicine practitioner perform a good quality lung isotope scan. The indications for the test are summarised. The different radiopharmaceuticals used for the ventilation and the perfusion studies, the technique for their administration, the dosimetry, the acquisition of the images, the processing and the display of the images are discussed in detail. The issue of whether a perfusion-only lung scan is sufficient or whether a full ventilation-perfusion study is necessary is also addressed. The document contains a comprehensive list of references and some web site addresses which may be of further assistance.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 125

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy