SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0361 0926 OR L773:1532 415X ;srt2:(1990-1994)"

Search: L773:0361 0926 OR L773:1532 415X > (1990-1994)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Brännäs, Kurt, et al. (author)
  • Time-series count data regression
  • 1994
  • In: Communications in Statistics - Theory and Methods. - : Informa UK Limited. - 0361-0926 .- 1532-415X. ; 23:10, s. 2907-2925
  • Journal article (peer-reviewed)abstract
    • The count data model studied in the paper extends the Poisson model by allowing for overdispersion and serial correlation. Alternative approaches to estimate nuisance parameters, required for the correction of the Poisson maximum likelihood covariance matrix estimator and for a quasi-likelihood estimator, are studied. The estimators are evaluated by finite sample Monte Carlo experimentation. It is found that the Poisson maximum likelihood estimator with corrected covariance matrix estimators provide reliable inferences for longer time series. Overdispersion test statistics are wellbehaved, while conventional portmanteau statistics for white noise have too large sizes. Two empirical illustrations are included.
  •  
2.
  •  
3.
  • Segerstedt, Bo (author)
  • On ordinary ridge regression in generalized linear models
  • 1992
  • In: Communications in Statistics - Theory and Methods. - Philadelphia : Taylor & Francis. - 0361-0926 .- 1532-415X. ; 21:8, s. 2227-2246
  • Journal article (peer-reviewed)abstract
    • In this paper it is shown that an ill-conditioned data matrix has similar effects on the parameter estimator when estimating generalized linear models as when estimating linear regression models. Asymptotically, the average length of the maximum likelihood estimator of a parameter vector increases as the conditioning of the covariance matrix deteriorates. A generalization of the ridge regression is suggested for maximum likelihood estimation in generalized linear models. In particular the existence of a ridge coefficient, k, such that the asymptotic mean square error of the generalized linear model ridge estimator is smaller than the asymptotic variance of the maximum likelihood estimator is shown. A numerical example illustrates the theoretical results
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3
Type of publication
journal article (3)
Type of content
peer-reviewed (2)
other academic/artistic (1)
Author/Editor
Klefsjö, Bengt (1)
Johansson, Per (1)
Brännäs, Kurt (1)
Segerstedt, Bo (1)
University
Umeå University (2)
Luleå University of Technology (1)
Language
English (3)
Research subject (UKÄ/SCB)
Natural sciences (2)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view