SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0363 6127 srt2:(2010-2014)"

Sökning: L773:0363 6127 > (2010-2014)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brown, Russell D., et al. (författare)
  • Tubuloglomerular feedback response in the prenatal and postnatal ovine kidney
  • 2011
  • Ingår i: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 300:6, s. F1368-F1374
  • Tidskriftsartikel (refereegranskat)abstract
    • Brown RD, Turner AJ, Carlstrom M, Persson AE, Gibson KJ. Tubuloglomerular feedback response in the prenatal and postnatal ovine kidney. Am J Physiol Renal Physiol 300: F1368-F1374, 2011. First published March 30, 2011; doi:10.1152/ajprenal. 00019.2011.-The tubuloglomerular feedback mechanism (TGF) plays an important role in regulating single-nephron glomerular filtration rate (GFR) by coupling distal tubular flow to arteriolar tone. It is not known whether TGF is active in the developing kidney or whether it can regulate renal vascular tone and thus GFR during intrauterine life. TGF characteristics were examined in late-gestation ovine fetuses and lambs under normovolemic and volume-expanded (VE) conditions. Lambs and pregnant ewes were anesthetized and the fetuses were delivered via a caesarean incision into a heated water bath, with the umbilical cord intact. Under normovolemic conditions, mean arterial pressure of the fetuses was lower than lambs (51 +/- 1 vs. 64 +/- 3 mmHg). The maximum TGF response (Delta P(SFmax)) was found to be lower in fetuses than lambs when tubular perfusion was increased from 0 to 40 nl/min (5.4 +/- 0.7 vs. 10.6 +/- 0.4 mmHg). Furthermore, the flow rate eliciting half-maximal response [turning point (TP)] was 15.7 +/- 0.9 nl/min in fetuses compared with 19.3 +/- 1.0 nl/min in lambs, indicating a greater TGF sensitivity of the prenatal kidney. VE decreased Delta P(SFmax) (4.2 +/- 0.4 mmHg) and increased TP to 23.7 +/- 1.3 nl/min in lambs. In fetuses, VE increased stop-flow pressure from 26.6 +/- 1.5 to 30.3 +/- 0.8 mmHg, and reset TGF sensitivity so that TP increased to 21.3 +/- 0.7 nl/min, but it had no effect on Delta P(SFmax). This study provides direct evidence that the TGF mechanism is active during fetal life and responds to physiological stimuli. Moreover, reductions in TGF sensitivity may contribute to the increase in GFR at birth.
  •  
2.
  • Ding, Mei, et al. (författare)
  • Regulation of hypoxia-inducible factor 2-a is essential for integrity of the glomerular barrier
  • 2013
  • Ingår i: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 304:1, s. F120-F126
  • Tidskriftsartikel (refereegranskat)abstract
    • Deletion of the von Hippel-Lindau tumor suppressor (Vhl) gene from renal podocytes of mice (podVhl KO) leads to rapidly progressive glomerulonephritis (RPGN), a clinical syndrome characterized by rapid loss of renal function and crescents on renal biopsy. Genomic profiling of glomeruli isolated from podVhl knockout (KO) mice and from patients with RPGN identified a fingerprint of genes regulated by hypoxia-inducible factors (HIF), important substrates of the product of the VHL gene. Here, we show that stabilization of Hifs in podocytes is both required and sufficient for the glomerular phenotype observed in podVhl KO mice. Genetic deletion of the obligate dimerization partner Arnt/Hif1b that is essential for Hif transcriptional function rescues the phenotype. Conversely, stabilization of HIF2A alone in podocytes results in crescentic glomerular disease. Together, our results show that the Hif pathway and Hif2a in particular are key players in maintenance of the glomerular barrier.
  •  
3.
  • Helle, Frank, et al. (författare)
  • Nitric oxide in afferent arterioles after uninephrectomy depends on extracellular L-arginine
  • 2013
  • Ingår i: AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY. - : American Physiological Society. - 1931-857X .- 1522-1466 .- 0363-6127. ; 304:8, s. F1088-F1098
  • Tidskriftsartikel (refereegranskat)abstract
    • Helle F, Skogstrand T, Schwartz IF, Schwartz D, Iversen BM, Palm F, Hultstrom M. Nitric oxide in afferent arterioles after uninephrectomy depends on extracellular L-arginine. Am J Physiol Renal Physiol 304: F1088-F1098, 2013. First published February 13, 2013; doi: 10.1152/ajprenal.00665.2011.-Uninephrectomy (UNX) causes hyperperfusion of the contralateral remaining kidney via increased nitric oxide (NO) synthesis. Although the exact mechanism remains largely unknown, we hypothesize that this would be localized to the afferent arteriole and that it depends on cellular uptake of L-arginine. The experiments were performed in rats 2 days (early) or 6 wk (late) after UNX and compared with controls (Sham) to study acute and chronic effects on NO metabolism. Renal blood flow was increased after UNX (21 +/- 2 ml.min(-1).kg(-1) in sham, 30 +/- 3 in early, and 26 +/- 1 in late, P andlt; 0.05). NO inhibition with N-omega-nitro-L-arginine methyl ester hydrochloride (L-NAME) caused a greater increase in renal vascular resistance in early UNX compared with Sham and late UNX (138 +/- 24 vs. 88 +/- 10, and 84 +/- 7%, P andlt; 0.01). The lower limit of autoregulation was increased both in early and late UNX compared with Sham (P andlt; 0.05). L-NAME did not affect the ANG II-induced contraction of isolated afferent arterioles (AA) from Sham. AA from early UNX displayed a more pronounced contraction in response to L-NAME (-57 +/- 7 vs. -16 +/- 7%, P andlt; 0.05) and in the absence of L-arginine (-41 +/- 4%, P andlt; 0.05) compared with both late UNX and Sham. mRNA expression of endothelial NO synthase was reduced, whereas protein expression was unchanged. Cationic amino acid transporter-1 and -2 mRNA was increased, while protein was unaffected in isolated preglomerular resistance vessels. In conclusion, NO-dependent hyperperfusion of the remaining kidney in early UNX is associated with increased NO release from the afferent arteriole, which is highly dependent on extracellular L-arginine availability.
  •  
4.
  • Lai, En Yin, et al. (författare)
  • Effects of the antioxidant drug tempol on renal oxygenation in mice with reduced renal mass
  • 2012
  • Ingår i: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 303:1, s. F64-74
  • Tidskriftsartikel (refereegranskat)abstract
    • We tested the hypothesis that reactive oxygen species (ROS) contributed to renal hypoxia in C57BL/6 mice with ⅚ surgical reduction of renal mass (RRM). ROS can activate the mitochondrial uncoupling protein 2 (UCP-2) and increase O(2) usage. However, UCP-2 can be inactivated by glutathionylation. Mice were fed normal (NS)- or high-salt (HS) diets, and HS mice received the antioxidant drug tempol or vehicle for 3 mo. Since salt intake did not affect the tubular Na(+) transport per O(2) consumed (T(Na/)Q(O2)), further studies were confined to HS mice. RRM mice had increased excretion of 8-isoprostane F(2α) and H(2)O(2), renal expression of UCP-2 and renal O(2) extraction, and reduced T(Na/)Q(O2) (sham: 20 ± 2 vs. RRM: 10 ± 1 μmol/μmol; P < 0.05) and cortical Po(2) (sham: 43 ± 2, RRM: 29 ± 2 mmHg; P < 0.02). Tempol normalized all these parameters while further increasing compensatory renal growth and glomerular volume. RRM mice had preserved blood pressure, glomeruli, and patchy tubulointerstitial fibrosis. The patterns of protein expression in the renal cortex suggested that RRM kidneys had increased ROS from upregulated p22(phox), NOX-2, and -4 and that ROS-dependent increases in UCP-2 led to hypoxia that activated transforming growth factor-β whereas erythroid-related factor 2 (Nrf-2), glutathione peroxidase-1, and glutathione-S-transferase mu-1 were upregulated independently of ROS. We conclude that RRM activated distinct processes: a ROS-dependent activation of UCP-2 leading to inefficient renal O(2) usage and cortical hypoxia that was offset by Nrf-2-dependent glutathionylation. Thus hypoxia in RRM may be the outcome of NADPH oxidase-initiated ROS generation, leading to mitochondrial uncoupling counteracted by defense pathways coordinated by Nrf-2.
  •  
5.
  • Li, Shenyang, et al. (författare)
  • Reduced kidney lipoprotein lipase and renal tubule triglyceride accumulation in cisplatin-mediated acute kidney injury
  • 2012
  • Ingår i: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 303:3, s. F437-F448
  • Tidskriftsartikel (refereegranskat)abstract
    • Peroxisome proliferator-activated receptor-alpha (PPAR alpha) activation attenuates cisplatin (CP)-mediated acute kidney injury by increasing fatty acid oxidation, but mechanisms leading to reduced renal triglyceride (TG) accumulation could also contribute. Here, we investigated the effects of PPAR alpha and CP on expression and enzyme activity of kidney lipoprotein lipase (LPL) as well as on expression of angiopoietin protein-like 4 (Angptl4), glycosylphosphatidylinositol-anchored-HDL-binding protein (GPIHBP1), and lipase maturation factor 1 (Lmf1), which are recognized as important proteins that modulate LPL activity. CP caused a 40% reduction in epididymal white adipose tissue (WAT) mass, with a reduction of LPL expression and activity. CP also reduced kidney LPL expression and activity. Angptl4 mRNA levels were increased by ninefold in liver and kidney tissue and by twofold in adipose tissue of CP-treated mice. Western blots of two-dimensional gel electrophoresis identified increased expression of a neutral pI Angptl4 protein in kidney tissue of CP-treated mice. Immunolocalization studies showed reduced staining of LPL and increased staining of Angptl4 primarily in proximal tubules of CP-treated mice. CP also increased TG accumulation in kidney tissue, which was ameliorated by PPAR alpha ligand. In summary, a PPAR alpha ligand ameliorates CP-mediated nephrotoxicity by increasing LPL activity via increased expression of GPHBP1 and Lmf1 and by reducing expression of Angptl4 protein in the proximal tubule.
  •  
6.
  •  
7.
  • Palm, Fredrik, et al. (författare)
  • Nitric oxide originating from NOS1 controls oxygen utilization and electrolyte transport efficiency in the diabetic kidney
  • 2010
  • Ingår i: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 298:2, s. F416-F420
  • Tidskriftsartikel (refereegranskat)abstract
    • Palm F, Fasching A, Hansell P, K llskog. Nitric oxide originating from NOS1 controls oxygen utilization and electrolyte transport efficiency in the diabetic kidney. Am J Physiol Renal Physiol 298: F416-F420, 2010. First published November 18, 2009; doi: 10.1152/ajprenal.00229.2009.-Nitric oxide (NO) is a potent regulator of both vascular tone and cellular oxygen consumption (QO(2)). Diabetic kidneys have reduced NO availability and increased QO(2). However, the exact nitric oxide synthase (NOS) isoform regulating QO(2), hemodynamics, and excretory function in the diabetic kidney remains unclear. We therefore investigated the effects of both selective neuronal NOS (NOS1) inhibition and nonselective NOS inhibition. Oxygen utilization, electrolyte transport efficiency [tubular Na+ transport (T-Na)/QO(2)], renal blood flow (RBF), glomerular filtration rate (GFR), and mean arterial pressure (MAP) were measured in vivo in control and streptozotocin-diabetic rats before and after administration of the selective NOS1 inhibitor S-methyl-L-thiocitrulline (SMTC) or the nonselective NOS inhibitor N-G-nitro-L-arginine methyl ester (L-NAME). Diabetic rats had higher baseline QO(2) and GFR than control rats, although RBF was similar in the groups. SMTC and L-NAME increased QO(2) and reduced T-Na/QO(2) only in the diabetic animals, whereas both inhibitors increased MAP and reduced RBF in both groups. GFR was reduced by L-NAME, but SMTC had no effect in either group. Carbachol increased RBF and decreased MAP in SMTC-treated rats, whereas it had no effect in L-NAME-treated rats, indicating that SMTC selectively inhibited NOS1. In conclusion, NO regulates RBF and GFR similarly in both control and diabetic rats. However, selective NOS1 inhibition increased QO(2) and reduced T-Na/QO(2) in the diabetic rat kidney, indicating a pivotal role of NO produced by NOS1 in maintaining control of QO(2) and tissue oxygenation in these kidneys.
  •  
8.
  • Palm, Fredrik, et al. (författare)
  • Uremia induces abnormal oxygen consumption in tubules and aggravates chronic hypoxia of the kidney via oxidative stress
  • 2010
  • Ingår i: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 299:2, s. F380-F386
  • Tidskriftsartikel (refereegranskat)abstract
    • In addition to causing uremic symptoms, uremic toxins accelerate the progression of renal failure. To elucidate the pathophysiology of uremic states, we investigated the effect of indoxyl sulfate (IS), a representative uremic toxin, on oxygen metabolism in tubular cells. We demonstrated an increase in oxygen consumption by IS in freshly isolated rat and human proximal tubules. Studies utilizing ouabain, the Na-K-ATPase inhibitor, and apocynin, the NADPH oxidase inhibitor, as well as the in vivo gene-silencing approach to knock down p22(phox) showed that the increase in tubular oxygen consumption by IS is dependent on Na-K-ATPase and oxidative stress. We investigated whether the enhanced oxygen consumption led to subsequent hypoxia of the kidney. An increase in serum IS concentrations in rats administered indole was associated with a decrease in renal oxygenation (8 h). The remnant kidney in rats developed hypoxia at 16 wk. Treatment of the rats with AST-120, an oral adsorbent that removes uremic toxins, reduced serum IS levels and improved oxygenation of the kidney. Amelioration of hypoxia in the remnant kidney was associated with better renal functions and less histological injury. Reduction of serum IS levels also led to a decrease in oxidative stress in the kidney. Our ex vivo and in vivo studies implicated that uremic states may deteriorate renal dysfunction via dysregulating oxygen metabolism in tubular cells. The abnormal oxygen metabolism in tubular cells by uremic toxins was, at least in part, mediated by oxidative stress.
  •  
9.
  • Patinha, Daniela, et al. (författare)
  • Angiotensin II contributes to glomerular hyperfiltration in diabetic rats independently of adenosine type I receptors
  • 2013
  • Ingår i: AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY. - : American Physiological Society. - 1931-857X .- 1522-1466 .- 0363-6127. ; 304:5, s. F614-F622
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased angiotensin II (ANG II) or adenosine can potentiate each other in the regulation of renal hemodynamics and tubular function. Diabetes is characterized by hyperfiltration, yet the roles of ANG II and adenosine receptors for controlling baseline renal blood flow (RBF) or tubular Na+ handling in diabetes is presently unknown. Accordingly, the changes in their functions were investigated in control and 2-wk streptozotocin-diabetic rats after intrarenal infusion of the ANG II AT(1) receptor antagonist candesartan, the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), or their combination. Compared with controls, the baseline blood pressure, RBF, and renal vascular resistance (RVR) were similar in diabetics, whereas the glomerular filtration rate (GFR) and filtration fraction (FF) were increased. Candesartan, DPCPX, or the combination increased RBF and decreased RVR similarly in all groups. In controls, the GFR was increased by DPCPX, but in diabetics, it was decreased by candesartan. The FF was decreased by candesartan and DPCPX, independently. DPCPX caused the most pronounced increase in fractional Na+ excretion in both controls and diabetics, whereas candesartan or the combination only affected fractional Li+ excretion in diabetics. These results suggest that RBF, via a unifying mechanism, and tubular function are under strict tonic control of both ANG II and adenosine in both control and diabetic kidneys. Furthermore, increased vascular AT(1) receptor activity is a contribution to diabetes-induced hyperfiltration independent of any effect of adenosine A(1) receptors.
  •  
10.
  • Rydholm, Susanna, et al. (författare)
  • Mechanical Properties of Primary Cilia Regulate the Response to Fluid flow
  • 2010
  • Ingår i: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 298:5, s. 1096-1102
  • Tidskriftsartikel (refereegranskat)abstract
    • The primary cilium is a ubiquitous organelle present on most mammalian cells. Malfunction of the organelle has been associated with various pathological disorders, many of which lead to cystic disorders in liver, pancreas, and kidney. Primary cilia have in kidney epithelial cells been observed to generate intracellular calcium in response to fluid flow, and disruption of proteins involved in this calcium signaling lead to autosomal dominant polycystic kidney disease, implying a direct connection between calcium signaling and cyst formation. It has also been shown that there is a significant lag between the onset of flow and initiation of the calcium signal. The present study focuses on the mechanics of cilium bending and the resulting calcium signal. Visualization of real-time cilium movements in response to different types of applied flow showed that the bending is fast compared with the initiation of calcium increase. Mathematical modeling of cilium and surrounding membrane was performed to deduce the relation between bending and membrane stress. The results showed a delay in stress buildup that was similar to the delay in calcium signal. Our results thus indicate that the delay in calcium response upon cilia bending is caused by mechanical properties of the cell membrane.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy