SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0888 3270 srt2:(2020-2024)"

Sökning: L773:0888 3270 > (2020-2024)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Linus, et al. (författare)
  • Efficient nonlinear reduced order modeling for dynamic analysis of flat structures
  • 2023
  • Ingår i: Mechanical Systems and Signal Processing. - : Elsevier BV. - 0888-3270. ; 191
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present paper, strategies for reduced order modeling of geometrically nonlinear finite element models are investigated. Simulation-free, non-intrusive approaches are considered, which do not require access to the source code of a finite element program (e.g., proprietary knowledge). Our study focus on but is not restricted to flat structures. Reduction bases are generated using bending modes and the associated modal derivatives, which span the additional subspace needed for an adequate approximation of the geometrically nonlinear response. Moreover, the reduced nonlinear restoring forces are expressed as third order polynomials in modal coordinates. Consequently, the reduced systems can be effectively solved using time-integration schemes involving only the reduced coordinates. A bottleneck in the non-intrusive methods is typically the computational effort for precomputing the polynomial coefficients and generating the reduction basis. In this regard, we demonstrate that modal derivatives have several useful properties. In particular, the modal derivatives essentially provide all the information needed for generating the polynomial coefficients for the in-plane coordinates. For condensed systems, which ignores the inertia of the in-plane modes, we show that the modal derivatives can be used effectively for recovering the in-plane displacements. Based on these findings, we propose a methodology for generating reduced order models of geometrically nonlinear flat structures in a computationally efficient manner. Moreover, we demonstrate that the concepts extend also to curved structures. The modeling techniques are validated by means of numerical examples of solid beam models and continuously supported shell models. The computational efficiency of the proposed methodology is evaluated based on the number of static evaluations needed for identifying the polynomial coefficients, as compared to the state-of-the-art methods. Furthermore, strategies for efficient time integration are discussed and evaluated.
  •  
2.
  • Avci, Onur, et al. (författare)
  • A review of vibration-based damage detection in civil structures : from traditional methods to Machine Learning and Deep Learning applications
  • 2021
  • Ingår i: Mechanical systems and signal processing. - : Elsevier. - 0888-3270 .- 1096-1216. ; 147
  • Tidskriftsartikel (refereegranskat)abstract
    • Monitoring structural damage is extremely important for sustaining and preserving the service life of civil structures. While successful monitoring provides resolute and staunch information on the health, serviceability, integrity and safety of structures; maintaining continuous performance of a structure depends highly on monitoring the occurrence, formation and propagation of damage. Damage may accumulate on structures due to different environmental and human-induced factors. Numerous monitoring and detection approaches have been developed to provide practical means for early warning against structural damage or any type of anomaly. Considerable effort has been put into vibration-based methods, which utilize the vibration response of the monitored structure to assess its condition and identify structural damage. Meanwhile, with emerging computing power and sensing technology in the last decade, Machine Learning (ML) and especially Deep Learning (DL) algorithms have become more feasible and extensively used in vibration-based structural damage detection with elegant performance and often with rigorous accuracy. While there have been multiple review studies published on vibration-based structural damage detection, there has not been a study where the transition from traditional methods to ML and DL methods are described and discussed. This paper aims to fulfill this gap by presenting the highlights of the traditional methods and provide a comprehensive review of the most recent applications of ML and DL algorithms utilized for vibration-based structural damage detection in civil structures.
  •  
3.
  • Baptista, Marcia L., et al. (författare)
  • More effective prognostics with elbow point detection and deep learning
  • 2021
  • Ingår i: Mechanical systems and signal processing. - : Elsevier. - 0888-3270 .- 1096-1216. ; 146
  • Tidskriftsartikel (refereegranskat)abstract
    • Prior to failure, most systems exhibit signs of changed characteristics. The early detection of this change is important to remaining useful life estimation. To have the ability to detect the inflection point or “elbow point” of an asset, i.e. the point of the degradation curve that marks the transition from nominal to faulty condition, can enable more sophisticated prognostics because this divide and conquer tactic allows the prediction to focus on the window before failure when significant changes are being expected. In this work, we compare prognostics with and without change point detection. We use different recurrent neural network techniques (standard recurrent neural network, long short-term memory and gated recurrent unit) to find the elbow point location. The actual estimation of the remaining time to failure is based on the echo state network, a state-of-the-art approach in prognostics. Two different experiments are performed on simulated data obtained from NASA Ames prognostics repository. We first compare the performance of the elbow point detectors based on recurrent neural networks against three baseline models: the Z-test, multi-layer perceptron and random forests. Results indicate that recurrent neural networks can outperform the baseline approaches. In the second experiment, the best elbow detection model, the gated recurrent unit, is integrated within an echo state network, with a significant increase in overall performance in terms of remaining useful life estimation.
  •  
4.
  • Cuenca, J., et al. (författare)
  • Deterministic and statistical methods for the characterisation of poroelastic media from multi-observation sound absorption measurements
  • 2022
  • Ingår i: Mechanical systems and signal processing. - : Elsevier BV. - 0888-3270 .- 1096-1216. ; 163
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper proposes a framework for the estimation of the transport and elastic properties of open-cell poroelastic media based on sound absorption measurements. The sought properties are the Biot-Johnson-Champoux-Allard model parameters, namely five transport parameters, two elastic properties and the mass density, as well as the sample thickness. The methodology relies on a multi-observation approach, consisting in combining multiple independent measurements into a single dataset, with the aim of over-determining the problem. In the present work, a poroelastic sample is placed in an impedance tube and tested in two loading conditions, namely in a rigid-backing configuration and coupled to a resonant expansion chamber. Given the nonmonotonic nature of the experimental data, an incremental parameter estimation procedure is used in order to guide the model parameters towards the global solution without terminating at local minima. A statistical inversion approach is also discussed, providing refined point estimates, uncertainty ranges and parameter correlations. The methodology is applied to the characterisation of a sample of melamine foam and provides estimates of all nine parameters with compact uncertainty ranges. It is shown that the model parameters are retrieved with a lower uncertainty in the multi-observation case, as compared with a single-observation case. The method proposed here does not require prior knowledge of the thickness or any of the properties of the sample, and can be carried out with a standard two-microphone impedance tube.
  •  
5.
  • Decuyper, J., et al. (författare)
  • Retrieving highly structured models starting from black-box nonlinear state-space models using polynomial decoupling
  • 2021
  • Ingår i: Mechanical systems and signal processing. - : Elsevier. - 0888-3270 .- 1096-1216. ; 146
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonlinear state-space modelling is a very powerful black-box modelling approach. However powerful, the resulting models tend to be complex, described by a large number of parameters. In many cases interpretability is preferred over complexity, making too complex models unfit or undesired. In this work, the complexity of such models is reduced by retrieving a more structured, parsimonious model from the data, without exploiting physical knowledge. Essential to the method is a translation of all multivariate nonlinear functions, typically found in nonlinear state-space models, into sets of univariate nonlinear functions. The latter is computed from a tensor decomposition. It is shown that typically an excess of degrees of freedom are used in the description of the nonlinear system whereas reduced representations can be found. The method yields highly structured state-space models where the nonlinearity is contained in as little as a single univariate function, with limited loss of performance. Results are illustrated on simulations and experiments for: the forced Duffing oscillator, the forced Van der Pol oscillator, a Bouc-Wen hysteretic system, and a Li-Ion battery model. (C) 2020 Elsevier Ltd. All rights reserved.
  •  
6.
  • Gibanica, Mladen, 1988, et al. (författare)
  • Identification of physically realistic state-space models for accurate component synthesis
  • 2020
  • Ingår i: Mechanical Systems and Signal Processing. - : Elsevier BV. - 0888-3270 .- 1096-1216. ; 145
  • Tidskriftsartikel (refereegranskat)abstract
    • For components that are difficult to model with conventional analytical or numerical tools, experimentally derived state-space models can instead be used in system synthesis. For successful state-space synthesis, a physically realistic model must be identified. For this purpose, a hybrid first- and second-order system description is used here as the basis for identification. In the identification procedure, a physically motivated rigid body rank constraint is imposed together with a reciprocity constraint. The two constraints are enforced during a re-estimation phase of the state-space matrices following after a traditional state-space subspace identification phase. In this paper, two complex and modally dense industrial components are combined into a dynamical system. An experimental model of a car body-in-white structure is identified. The identified subsystem model is coupled with a finite element model of a rear subframe in a system synthesis. The two subsystems are attached through four rubber bushings modelled by finite element procedures. It is shown that the experimental-analytical assembly successfully predicts the reference measured system, with higher accuracy than what could be achieved with a model based solely on finite elements. It is also shown that synthesis with individually calibrated rear subframe models can capture the variability in the coupled system.
  •  
7.
  •  
8.
  • Kiranyaz, Serkan, et al. (författare)
  • 1D convolutional neural networks and applications : A survey
  • 2021
  • Ingår i: Mechanical systems and signal processing. - : Elsevier. - 0888-3270 .- 1096-1216. ; 151
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last decade, Convolutional Neural Networks (CNNs) have become the de facto standard for various Computer Vision and Machine Learning operations. CNNs are feed-forward Artificial Neural Networks (ANNs) with alternating convolutional and subsampling layers. Deep 2D CNNs with many hidden layers and millions of parameters have the ability to learn complex objects and patterns providing that they can be trained on a massive size visual database with ground-truth labels. With a proper training, this unique ability makes them the primary tool for various engineering applications for 2D signals such as images and video frames. Yet, this may not be a viable option in numerous applications over 1D signals especially when the training data is scarce or application specific. To address this issue, 1D CNNs have recently been proposed and immediately achieved the state-of-the-art performance levels in several applications such as personalized biomedical data classification and early diagnosis, structural health monitoring, anomaly detection and identification in power electronics and electrical motor fault detection. Another major advantage is that a real-time and low-cost hardware implementation is feasible due to the simple and compact configuration of 1D CNNs that perform only 1D convolutions (scalar multiplications and additions). This paper presents a comprehensive review of the general architecture and principals of 1D CNNs along with their major engineering applications, especially focused on the recent progress in this field. Their state-of-the-art performance is highlighted concluding with their unique properties. The benchmark datasets and the principal 1D CNN software used in those applications are also publicly shared in a dedicated website. While there has not been a paper on the review of 1D CNNs and its applications in the literature, this paper fulfills this gap. (C) 2020 The Author(s). Published by Elsevier Ltd.
  •  
9.
  • Kiranyaz, Serkan, et al. (författare)
  • Zero-shot motor health monitoring by blind domain transition
  • 2024
  • Ingår i: Mechanical systems and signal processing. - : Elsevier. - 0888-3270 .- 1096-1216. ; 210
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuous long-term monitoring of motor health is crucial for the early detection of abnormalities such as bearing faults (up to 51% of motor failures are attributed to bearing faults). Despite numerous methodologies proposed for bearing fault detection, most of them require normal (healthy) and abnormal (faulty) data for training. Even with the recent deep learning (DL) methodologies trained on the labeled data from the same machine, the classification accuracy significantly deteriorates when one or few conditions are altered, e.g., a different speed or load, or for different fault types/severities with sensors placed in different locations. Furthermore, their performance suffers significantly or may entirely fail when they are tested on another machine with entirely different healthy and faulty signal patterns. To address this need, in this pilot study, we propose a zero -shot bearing fault detection method that can detect any fault on a new (target) machine regardless of the working conditions, sensor parameters, or fault characteristics. To accomplish this objective, a 1D Operational Generative Adversarial Network (Op-GAN) first characterizes the transition between normal and fault vibration signals of (a) source machine(s) under various conditions, sensor parameters, and fault types. Then for a target machine, the potential faulty signals can be generated, and over its actual healthy and synthesized faulty signals, a compact, and lightweight 1D Self-ONN fault detector can then be trained to detect the real faulty condition in real time whenever it occurs. To validate the proposed approach, a new benchmark dataset is created using two different motors working under different conditions and sensor locations. Experimental results demonstrate that this novel approach can accurately detect any bearing fault achieving an average recall rate of around 89% and 95% on two target machines regardless of its type, severity, and location.
  •  
10.
  • Li, Hailong, 1976-, et al. (författare)
  • A self-powered smart wave energy converter for sustainable sea
  • 2024
  • Ingår i: Mechanical systems and signal processing. - : Academic Press. - 0888-3270 .- 1096-1216. ; 220
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-powered smart buoys are widely used in sustainable sea, such as marine environmental monitoring. The article designs a self-powered and self-sensing point-absorber wave energy converter based on the two-arm mechanism. The system consists of the wave energy capture module, the power take-off module, the generator module and the energy storage module. As the core component of the wave energy converter, the power take-off module is mainly composed of a two-arm mechanism, which can convert the oscillation heave motion into unidirectional rotary motion. To evaluate the power generation performance of the system, the kinematic and dynamic models of the wave energy converter with the flywheel are established, and the disengagement and engagement phenomena of the flywheel are analyzed. The effectiveness of the prototype in capturing wave energy is verified through dry experiments in lab and field tests. The dry experiment reveals that the maximum output power of the system is 5.67 W, and the maximum and average mechanical efficiency are 66.63 % and 48.35 %, respectively. Additionally, the field test demonstrates that the peak output power can reach 92 W. Meanwhile, the generated electrical signals can be processed by deep learning algorithms to accurately identify different wave states. This high performance confirms that the proposed wave energy converter can meet its own energy needs by capturing wave energy in the marine environment, while also achieving self-sensing for wave condition monitoring. The system has great potential for promoting the development of intelligent sustainable sea in the future. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy