SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0892 6638 srt2:(2020-2024)"

Sökning: L773:0892 6638 > (2020-2024)

  • Resultat 1-10 av 67
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Addinsall, Alex B., et al. (författare)
  • Ruxolitinib Prevents Ventilator Induced Diaphragm Dysfunction
  • 2022
  • Ingår i: The FASEB Journal. - : John Wiley & Sons. - 0892-6638 .- 1530-6860. ; 36:S1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanical ventilation (MV), however brief results in the loss of diaphragm muscle mass and strength, termed ventilator induced diaphragm dysfunction (VIDD). VIDD increases dependence, complicates and prolongs weaning and significantly increases discharge mortality rate and health care costs worldwide. The Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) pathway was recently identified as an important signalling pathway implicated in VIDD, upregulated in the diaphragm following MV and limb muslces during critical care. Regulation of STAT3 is imperritve to skeletal muscle mass and function, as STAT3 is required in proper muscle growth and regeneration, while chronic activation of STAT3 is implicated in muscle dysfunction. As JAK/STAT pathway inhibition can restrict the development of chronic muscle wasting conditons, this study aimed to explore the therapeutic potential of Ruxolitinib, an approved JAK1/2 inhibitor for myelofibrosis, for treatment of CIM. We hypothesised Ruxolitinib would reduce loss of muscle mass and function associated with VIDD. Here, rats were subjected to five days controlled MV (CMV) with and without daily Ruxolitinib gavage. Five-days CMV significantly reduced diaphragm muscle size and impaired specific force, which was associated with 2-fold upregulation of P-STAT3, disrupted mitochondrial structure and respiratory function. Expression of the motor protein myosin was not affected, however CMV may alter myosin function through deamidation post translational modification. Ruxolitinib increases five-day survival rate, restored P-STAT3 expression and preserved diaphragm muscle size and specific force. These functional improvements were associated with improved mitochondrial structure, augmented mitochondrial respiratory function and reversal or augmentation of myosin deamidations. These results provide evidence of the preclinical potential of repurposing Ruxolitinib for the treatment of VIDD.
  •  
2.
  •  
3.
  •  
4.
  • Bratengeier, Cornelia, et al. (författare)
  • High shear stress amplitude in combination with prolonged stimulus duration determine induction of osteoclast formation by hematopoietic progenitor cells
  • 2020
  • Ingår i: The FASEB Journal. - : FEDERATION AMER SOC EXP BIOL. - 0892-6638 .- 1530-6860. ; 34:3, s. 3755-3772
  • Tidskriftsartikel (refereegranskat)abstract
    • To date, it is unclear how fluid dynamics stimulate mechanosensory cells to induce an osteoprotective or osteodestructive response. We investigated how murine hematopoietic progenitor cells respond to 2 minutes of dynamic fluid flow stimulation with a precisely controlled sequence of fluid shear stresses. The response was quantified by measuring extracellular adenosine triphosphate (ATP), immunocytochemistry of Piezo1, and sarcoplasmic/endoplasmic Ca2+ reticulum ATPase 2 (SERCA2), and by the ability of soluble factors produced by mechanically stimulated cells to modulate osteoclast differentiation. We rejected our initial hypothesis that peak wall shear stress rate determines the response of hematopoietic progenitor cells to dynamic fluid shear stress, as it had only a minor correlation with the abovementioned parameters. Low stimulus amplitudes corresponded to activation of Piezo1, SERCA2, low concentrations of extracellular ATP, and inhibition of osteoclastogenesis and resorption area, while high amplitudes generally corresponded to osteodestructive responses. At a given amplitude (3 Pa) and waveform (square), the duration of individual stimuli (duty cycle) showed a strong correlation with the release of ATP and osteoclast number and resorption area. Collectively, our data suggest that hematopoietic progenitor cells respond in a viscoelastic manner to loading, since a combination of high shear stress amplitude and prolonged duty cycle is needed to trigger an osteodestructive response. Plain Language Summary In case of painful joints or missing teeth, the current intervention is to replace them with an implant to keep a high-quality lifestyle. When exercising or chewing, the cells in the bone around the implant experience mechanical loading. This loading generally supports bone formation to strengthen the bone and prevent breaking, but can also stimulate bone loss when the mechanical loading becomes too high around orthopedic and dental implants. We still do not fully understand how cells in the bone can distinguish between mechanical loading that strengthens or weakens the bone. We cultured cells derived from the bone marrow in the laboratory to test whether the bone loss response depends on (i) how fast a mechanical load is applied (rate), (ii) how intense the mechanical load is (amplitude), or (iii) how long each individual loading stimulus is applied (duration). We mimicked mechanical loading as it occurs in the body, by applying very precisely controlled flow of fluid over the cells. We found that a mechanosensitive receptor Piezo1 was activated by a low amplitude stimulus, which usually strengthens the bone. The potential inhibitor of Piezo1, namely SERCA2, was only activated by a low amplitude stimulus. This happened regardless of the rate of application. At a constant high amplitude, a longer duration of the stimulus enhanced the bone-weakening response. Based on these results we deduce that a high loading amplitude tends to be bone weakening, and the longer this high amplitude persists, the worse it is for the bone.
  •  
5.
  • Bratengeier, Cornelia, et al. (författare)
  • Mechanical loading intensities affect the release of extracellular vesicles from mouse bone marrow-derived hematopoietic progenitor cells and change their osteoclast-modulating effect
  • 2024
  • Ingår i: The FASEB Journal. - : WILEY. - 0892-6638 .- 1530-6860. ; 38:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-intensity loading maintains or increases bone mass, whereas lack of mechanical loading and high-intensity loading decreases bone mass, possibly via the release of extracellular vesicles by mechanosensitive bone cells. How different loading intensities alter the biological effect of these vesicles is not fully understood. Dynamic fluid shear stress at low intensity (0.7 +/- 0.3 Pa, 5 Hz) or high intensity (2.9 +/- 0.2 Pa, 1 Hz) was used on mouse hematopoietic progenitor cells for 2 min in the presence or absence of chemical compounds that inhibit release or biogenesis of extracellular vesicles. We used a Receptor activator of nuclear factor kappa-Beta ligand-induced osteoclastogenesis assay to evaluate the biological effect of different fractions of extracellular vesicles obtained through centrifugation of medium from hematopoietic stem cells. Osteoclast formation was reduced by microvesicles (10 000x g) obtained after low-intensity loading and induced by exosomes (100 000x g) obtained after high-intensity loading. These osteoclast-modulating effects could be diminished or eliminated by depletion of extracellular vesicles from the conditioned medium, inhibition of general extracellular vesicle release, inhibition of microvesicle biogenesis (low intensity), inhibition of ESCRT-independent exosome biogenesis (high intensity), as well as by inhibition of dynamin-dependent vesicle uptake in osteoclast progenitor cells. Taken together, the intensity of mechanical loading affects the release of extracellular vesicles and change their osteoclast-modulating effect. The intensity of mechanical loading strongly affects bone remodeling by either formation of bone or resorption of bone. Low-intensity loading on bone cells releases microvesicles that reduce formation of bone-resorbing osteoclasts, while high-intensity loading on bone cells releases exosomes that induce formation of bone-resorbing osteoclasts. The graphical abstract was created with image
  •  
6.
  • Camacho-Munoz, D., et al. (författare)
  • Omega-3 carboxylic acids and fenofibrate differentially alter plasma lipid mediators in patients with non-alcoholic fatty liver disease
  • 2021
  • Ingår i: Faseb Journal. - : John Wiley & Sons. - 0892-6638 .- 1530-6860. ; 35:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Fibrates and omega-3 polyunsaturated acids are used for the treatment of hypertriglyceridemia but have not demonstrated consistent effects on cardiovascular (CV) risk. In this study, we investigate how these two pharmacological agents influence plasma levels of bioactive lipid mediators, aiming to explore their efficacy beyond that of lipid-lowering agents. Plasma from overweight patients with non-alcoholic fatty liver disease (NAFLD) and hypertriglyceridemia, participating in a randomized placebo-controlled study investigating the effects of 12 weeks treatment with fenofibrate or omega-3 free carboxylic acids (OM-3CA) (200 mg or 4 g per day, respectively), were analyzed for eicosanoids and related PUFA species, N-acylethanolamines (NAE) and ceramides. OM-3CA reduced plasma concentrations of proinflammatory PGE(2), as well as PGE(1), PGD(1) and thromboxane B2 but increased prostacyclin, and eicosapentaenoic acid- and docosahexaenoic acid-derived lipids of lipoxygenase and cytochrome P450 monooxygenase (CYP) (e.g., 17-HDHA, 18-HEPE, 19,20-DiHDPA). Fenofibrate reduced plasma concentrations of vasoactive CYP-derived eicosanoids (DHETs). Although OM-3CA increased plasma levels of the NAE docosahexaenoyl ethanolamine and docosapentaenoyl ethanolamine, and fenofibrate increased palmitoleoyl ethanolamine, the effect of both treatments may have been masked by the placebo (olive oil). Fenofibrate was more efficacious than OM-3CA in significantly reducing plasma ceramides, pro-inflammatory lipids associated with CV disease risk. Neither treatment affected putative lipid species associated with NAFLD. Our results show that OM-3CA and fenofibrate differentially modulate the plasma mediator lipidome, with OM-3CA promoting the formation of lipid mediators with potential effects on chronic inflammation, while fenofibrate mainly reducing ceramides. These findings suggest that both treatments could ameliorate chronic inflammation with possible impact on disease outcomes, independent of triglyceride reduction.
  •  
7.
  • Caputo, Mara, et al. (författare)
  • Silencing of STE20-type kinase MST3 in mice with antisense oligonucleotide treatment ameliorates diet-induced nonalcoholic fatty liver disease
  • 2021
  • Ingår i: FASEB Journal. - 0892-6638. ; 35:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is emerging as a leading cause of chronic liver disease worldwide. Despite intensive nonclinical and clinical research in this field, no specific pharmacological therapy is currently approved to treat NAFLD, which has been recognized as one of the major unmet medical needs of the 21st century. Our recent studies have identified STE20-type kinase MST3, which localizes to intracellular lipid droplets, as a critical regulator of ectopic fat accumulation in human hepatocytes. Here, we explored whether treatment with Mst3-targeting antisense oligonucleotides (ASOs) can promote hepatic lipid clearance and mitigate NAFLD progression in mice in the context of obesity. We found that administration of Mst3-targeting ASOs in mice effectively ameliorated the full spectrum of high-fat diet-induced NAFLD including liver steatosis, inflammation, fibrosis, and hepatocellular damage. Mechanistically, Mst3 ASOs suppressed lipogenic gene expression, as well as acetyl-CoA carboxylase (ACC) protein abundance, and substantially reduced lipotoxicity-mediated oxidative and endoplasmic reticulum stress in the livers of obese mice. Furthermore, we found that MST3 protein levels correlated positively with the severity of NAFLD in human liver biopsies. In summary, this study provides the first in vivo evidence that antagonizing MST3 signaling is sufficient to mitigate NAFLD progression in conditions of excess dietary fuels and warrants future investigations to assess whether MST3 inhibitors may provide a new strategy for the treatment of patients with NAFLD.
  •  
8.
  • Caputo, Mara, et al. (författare)
  • STE20-type kinases MST3 and MST4 promote the progression of hepatocellular carcinoma: Evidence from human cell culture and expression profiling of liver biopsies
  • 2023
  • Ingår i: Faseb Journal. - 0892-6638. ; 37:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatocellular carcinoma (HCC) is one of the most fatal and fastest growing malignancies. Recently, nonalcoholic steatohepatitis (NASH), characterized by liver steatosis, inflammation, cell injury (hepatocyte ballooning), and different stages of fibrosis, has emerged as a major catalyst for HCC. Because the STE20-type kinases, MST3 and MST4, have been described as critical molecular regulators of NASH pathophysiology, we here focused on determining the relevance of these proteins in human HCC. By analyzing public datasets and in-house cohorts, we found that hepatic MST3 and MST4 expression was positively correlated with the incidence and severity of HCC. We also found that the silencing of both MST3 and MST4, but also either of them individually, markedly suppressed the tumorigenesis of human HCC cells including attenuated proliferation, migration, invasion, and epithelial-mesenchymal transition. Mechanistic investigations revealed lower activation of STAT3 signaling in MST3/MST4-deficient hepatocytes and identified GOLGA2 and STRIPAK complex as the binding partners of both MST3 and MST4. These findings reveal that MST3 and MST4 play a critical role in promoting the progression of HCC and suggest that targeting these kinases may provide a novel strategy for the treatment of liver cancer.
  •  
9.
  • Choi, Y. H., et al. (författare)
  • A single-cell gene expression atlas of human follicular aspirates: Identification of leukocyte subpopulations and their paracrine factors
  • 2023
  • Ingår i: Faseb Journal. - 0892-6638. ; 37:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Leukocytes are in situ regulators critical for ovarian function. However, little is known about leukocyte subpopulations and their interaction with follicular cells in ovulatory follicles, especially in humans. Single-cell RNA sequencing (scRNA-seq) was performed using follicular aspirates obtained from four IVF patients and identified 13 cell groups: one granulosa cell group, one thecal cell group, 10 subsets of leukocytes, and one group of RBC/platelet. RNA velocity analyses on five granulosa cell populations predicted developmental dynamics denoting two projections of differentiation states. The cell type-specific transcriptomic profiling analyses revealed the presence of a diverse array of leukocyte-derived factors that can directly impact granulosa cell function by activating their receptors (e.g., cytokines and secretory ligands) and are involved in tissue remodeling (e.g., MMPs, ADAMs, ADAMTSs, and TIMPs) and angiogenesis (e.g., VEGFs, PGF, FGF, IGF, and THBS1) in ovulatory follicles. Consistent with the findings from the scRNA-seq data, the leukocyte-specific expression of CD68, IL1B, and MMP9 was verified in follicle tissues collected before and at defined hours after hCG administration from regularly cycling women. Collectively, this study demonstrates that this data can be used as an invaluable resource for identifying important leukocyte-derived factors that promote follicular cell function, thereby facilitating ovulation and luteinization in women.
  •  
10.
  • Deshpande, Prasannakumar, et al. (författare)
  • Protein synthesis is suppressed in sporadic and familial Parkinson’s disease by LRRK2
  • 2020
  • Ingår i: FASEB Journal. - 0892-6638. ; 34:11, s. 14217-14233
  • Tidskriftsartikel (refereegranskat)abstract
    • Gain of function LRRK2-G2019S is the most frequent mutation found in familial and sporadic Parkinson's disease. It is expected therefore that understanding the cellular function of LRRK2 will provide insight on the pathological mechanism not only of inherited Parkinson's, but also of sporadic Parkinson's, the more common form. Here, we show that constitutive LRRK2 activity controls nascent protein synthesis in rodent neurons. Specifically, pharmacological inhibition of LRRK2, Lrrk2 knockdown or Lrrk2 knockout, all lead to increased translation. In the rotenone model for sporadic Parkinson's, LRRK2 activity increases, dopaminergic neuron translation decreases, and the neurites atrophy. All are prevented by LRRK2 inhibitors. Moreover, in striatum and substantia nigra of rotenone treated rats, phosphorylation changes are observed on eIF2α-S52(↑), eIF2s2-S2(↓), and eEF2-T57(↑) in directions that signify protein synthesis arrest. Significantly, translation is reduced by 40% in fibroblasts from Parkinson's patients (G2019S and sporadic cases alike) and this is reversed upon LRRK2 inhibitor treatment. In cells from multiple system atrophy patients, translation is unchanged suggesting that repression of translation is specific to Parkinson's disease. These findings indicate that repression of translation is a proximal function of LRRK2 in Parkinson's pathology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 67
Typ av publikation
tidskriftsartikel (56)
konferensbidrag (10)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (55)
övrigt vetenskapligt/konstnärligt (12)
Författare/redaktör
Marschall, Hanns-Ulr ... (2)
Mörgelin, Matthias (2)
Baumann, Ulrich (2)
Gebauer, Jan M. (2)
Brismar, Hjalmar (2)
Poutanen, Matti (2)
visa fler...
Sengle, Gerhard (2)
Andersson, Magnus (1)
Larsson, Lars (1)
Campbell, M. (1)
Claesson-Welsh, Lena (1)
Johansson, L (1)
Zetterberg, Henrik, ... (1)
Uhlén, Mathias (1)
Gummesson, Anders, 1 ... (1)
Zhong, Wen (1)
Bäckhed, Fredrik, 19 ... (1)
Bergström, Göran, 19 ... (1)
Krook, A (1)
Jin, H. (1)
Nigro, C. (1)
Rising, Anna (1)
Ma, LJ (1)
Lu, H. J. (1)
Howard, Rebecca (1)
Johansson, Birgitta, ... (1)
Lind, Lars (1)
Johansson, Jan (1)
Bergquist, Jonas (1)
Brinkmalm, Gunnar (1)
Sehlin, Dag, 1976- (1)
Shevchenko, Ganna (1)
Greco, D (1)
Gilthorpe, Jonathan ... (1)
Pejler, Gunnar (1)
Zhang, F. P. (1)
Strauss, L. (1)
Maegdefessel, L (1)
Adameyko, I (1)
Konigsrainer, A (1)
Paulsson, Mats (1)
Addinsall, Alex B. (1)
Cacciani, Nicola (1)
Moruzzi, Noah (1)
Maestri, Alice (1)
Akkad, Hasem (1)
Ruas, Jorge (1)
Jerlhag, Elisabeth, ... (1)
Björn, Erik (1)
Hammarlund, Maria (1)
visa färre...
Lärosäte
Karolinska Institutet (22)
Göteborgs universitet (18)
Lunds universitet (12)
Uppsala universitet (9)
Linköpings universitet (9)
Umeå universitet (6)
visa fler...
Kungliga Tekniska Högskolan (6)
Sveriges Lantbruksuniversitet (4)
Örebro universitet (3)
Stockholms universitet (2)
Högskolan i Skövde (2)
Högskolan i Halmstad (1)
Chalmers tekniska högskola (1)
Gymnastik- och idrottshögskolan (1)
visa färre...
Språk
Engelska (67)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (49)
Naturvetenskap (17)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy