SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0957 4522 srt2:(2020-2024)"

Sökning: L773:0957 4522 > (2020-2024)

  • Resultat 1-10 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdel-Baset, T. A., et al. (författare)
  • Effect of metal dopant on structural and magnetic properties of ZnO nanoparticles
  • 2021
  • Ingår i: Journal of materials science. Materials in electronics. - : Springer. - 0957-4522 .- 1573-482X. ; 32:12, s. 16153-16165
  • Tidskriftsartikel (refereegranskat)abstract
    • Zn1-xRxO (R = Li, Mg, Cr, Mn, Fe and Cd) were obtained by using co-precipitation synthesis technique with constant weight percent of 3% from R ions. The phase composition, crystal structure, morphology, density functional theory (DFT), and magnetic properties were examined to comprehend the influence of Zn2+ partial substitution with R ions. X-ray diffraction shows that the ZnO lattice parameters were slightly affected by R doping and the doped sample crystallinity is enhanced. Our results show that introducing Cr, Mn and Fe along with Mg into ZnO induces a clear magnetic moment without any apparent distortion in the structural morphology. The spatial configuration of dopant atoms is determined from first-principles calculations, giving a better understanding of the position of the dopant atom responsible for the magnetism. The magnetic moments obtained from our calculations are 3.67, 5.0, and 4.33 mu B per dopant atom for Cr, Mn, and Fe, respectively, which agree with the experimental values. While Cr and Fe tend to form clusters, Mn has more propensity to remain evenly distributed within the system, avoiding cluster-derived magnetism.
  •  
2.
  • Alshgari, Razan A., et al. (författare)
  • Manipulation of CuO morphology for efficient potentiometric detection of urea via slow nucleation/growth kinetics exerted by mixed solvents
  • 2022
  • Ingår i: Journal of materials science. Materials in electronics. - : SPRINGER. - 0957-4522 .- 1573-482X. ; 33, s. 25250-25262
  • Tidskriftsartikel (refereegranskat)abstract
    • Controlling the reaction kinetics during the nucleation/growth of cupric oxide (CuO) nanostructures is very critical in order to achieve a specific and well-defined morphology. For this purpose, we have slowed down the reaction speed using a mixed solvent concept and successfully obtained a chain-like morphology of CuO nanostructures using hydrothermal method. The CuO chain-like morphology was synthesized using a 1:1 (v/v) ratio of ethylene glycol and water. The morphology and crystalline features of CuO were studied by scanning electron microscopy (SEM) and powder X-ray diffraction techniques. The high resolution transmission electron microscopy revealed 5 nm crystallite size for the CuO material prepared in the mixed solvents. The obtained results have shown that the prepared CuO chains had a monocline phase, containing only Cu and O as main elements as confirmed by energy dispersive spectroscopy. This unique morphology obtained from mixed solvent process has provided a better surface for the loading of urease enzyme, thus it enabled the development of sensitive and selective urea biosensor in phosphate buffer solution of pH 7.4. The physical adsorption method was used to immobilize urease enzyme onto the nano surface of CuO. The fabricated biosensor based on urease/CuO chains has shown a dynamic linear range from 0.0005 to15 mM with a low limit of detection 0.0001 mM. Additionally, a fast response time aroudn1s, h high selectivity, stability, repeatability, storage time, and reproducibility were observed. The effect of pH and temperature on the potentiometric signal of the developed biosensor was also examined. Importantly, the practical aspects of the fabricated urea biosensor were probed and the obtained percent recovery results revealed an outstanding performance. The strategy of using mixed solvent with equal volume ratio would be useful for the preparation of other metal oxides with improved catalytic properties for a wide range of clinical, biomedical and other related applications.
  •  
3.
  • Bandara, Tmwj, et al. (författare)
  • Efficiency enhancement and chrono-photoelectron generation in dye-sensitized solar cells based on spin-coated TiO2 nanoparticle multilayer photoanodes and a ternary iodide gel polymer electrolyte
  • 2023
  • Ingår i: Journal of Materials Science-Materials in Electronics. - 0957-4522. ; 34:28
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of the thickness of a multilayer TiO2 photoanode on the performance of a dye-sensitized solar cell (DSC) made with a polyethylene oxide-based gel polymer electrolyte containing ternary iodides and performance enhancer 4-tert-butylpyridine is studied. Multilayer photoanodes consisting of up to seven layers of TiO2 nano-particles (13 nm and 21 nm) are prepared by spin coating of successive layers. XRD results confirm the predominant presence of the anatase phase of TiO2 in the multilayer structure after sintering. The SEM images reveal the formation of a single TiO2 film upon sintering due to merging of individually deposited layers. The photocurrent density (J(SC)) and the efficiency increase with the number of TiO2 layers exhibiting the maximum efficiency and J(SC) of 5.5% and 12.5 mA cm(-2), respectively, for the 5-layered electrode of total thickness 4.0 mu m with a 9.66 x 10(-8) mol cm(-2) surface dye concentration. The present study introduces a method of determining the rate of effective photoelectron generation and the average time gap between two successive photon absorptions where the respective results are 1.34 molecule(-1) s(-1) and 0.74 s for the most efficient cell studied in this work.
  •  
4.
  • Dhumal, Jyoti, et al. (författare)
  • Enhanced heating ability of Fe–Mn–Gd ferrite nanoparticles for magnetic fluid hyperthermia
  • 2020
  • Ingår i: Journal of materials science. Materials in electronics. - : Springer Science and Business Media LLC. - 0957-4522 .- 1573-482X. ; 31, s. 11457-11469
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reveals the structural, magnetic and heating ability of citric acid coated Fe0.3Mn0.7GdxFe2−xO4 (x = 0, 0.02, 0.04, 0.06, 0.08 and 0.1) nanocrystalline ferrites. The synthesis of Gd-doped Fe–Mn ferrite nanoparticles (NPs) is confirmed by XRD studies. Substitution of Gd3+ions in Fe–Mn ferrite causes the lattice constant enhancement from 8.3286 to 8.4699 Å. The cation distribution reveals that Gd3+ ions preferred the octahedral sites of Fe–Mn ferrite. The average crystallite size is around 10–12 nm. The Fe–Mn–Gd spinel ferrite NPs are also characterized by FTIR studies and supports its formation. The saturation magnetization increases with Gd-content, take its maximum value for x = 0.06 and drops further for higher x values. The change in saturation magnetization show a connection with the structural modifications; because of replacement of Gd3+ ions at the place of Fe3+ ions in the octahedral site (B-site), it modifies A and B sublattices superexchange interactions. The heating abilities of these nanoparticles are studied by applying different alternating magnetic fields at constant frequency 289 kHz. When referred to the Gd-content, the SAR exhibits similar variation as saturation magnetization (Ms) and anisotropy constant (K), the later being more dominant. The highest value of SAR is 640 W/g for Fe0.3Mn0.7Gd0.06Fe1.94O4 sample under an applied field 251.4 Oe. It is seen that SAR is increased by nearly six times as compared to pristine Fe0.3Mn0.7Fe2O4 nanoparticles. The present results suggest that magnetic field controlled therapeutic temperature can be easily achieved within 1 min using such nanoparticles. 
  •  
5.
  • Engelbrecht, J. A. A., et al. (författare)
  • Comparison of experimental results with theoretical models for the temperature dependence of the band gap of AlxGa1-xN epilayers
  • 2022
  • Ingår i: Journal of materials science. Materials in electronics. - : SPRINGER. - 0957-4522 .- 1573-482X. ; 33, s. 22492-22498
  • Tidskriftsartikel (refereegranskat)abstract
    • The band gap energies AlxGa1-xN epilayers prepared on two different substrates were assessed using Fourier Transform Infrared (FTIR) reflectance spectroscopy, photoluminescence (PL) and scanning electron microscopy electron dispersive spectroscopy (SEM-EDS). The results were compared to various theoretical formulae to calculate the band gap, and deviations elucidated.
  •  
6.
  • Haghighatzadeh, Azadeh, et al. (författare)
  • Facile synthesis of ZnS-Ag2S core-shell nanospheres with enhanced nonlinear refraction
  • 2020
  • Ingår i: Journal of materials science. Materials in electronics. - : SPRINGER. - 0957-4522 .- 1573-482X. ; 31:2, s. 1283-1292
  • Tidskriftsartikel (refereegranskat)abstract
    • ZnS-Ag2S core-shell nano/hetero-junctions have been synthesized by a two-step co-precipitation technique, in which thin layers of -Ag2S have been successfully coated on the surface of ZnS nanospheres. Structural studies and elemental analysis have been performed using X-ray diffraction, Fourier transfer infrared spectroscopy, field emission scanning electron microscopy, energy dispersive spectroscopy, and high-resolution transmission electron microscopy. UV-Vis diffuse reflectance spectroscopy and photoluminescence spectroscopy have been employed to investigate linear optical characteristics. Nanosecond laser pulsed-based single-beam Z-scan analysis has been used to examine the magnitude and the sign of the third-order nonlinear refractive indices. Samples show negative values of nonlinear refractive indices indicating self-defocusing optical nonlinearity under 1064 nm excitation. The results have shown that the third-order nonlinear refractive index in ZnS nanospheres can reach the magnitude of 61.0 x 10-12 m2/W by encapsulating such a nanostructure within nanometer shells of -Ag2S. The enhanced nonlinearity for ZnS-Ag2S core-shells has been found to be 9 times higher than sole ZnS nanoparticles, which was estimated to be about 6.4 x 10-12 m2/W.
  •  
7.
  • Haghighatzadeh, A., et al. (författare)
  • Hollow ZnO microspheres self-assembled from rod-like nanostructures : morphology-dependent linear and Kerr-type nonlinear optical properties
  • 2021
  • Ingår i: Journal of materials science. Materials in electronics. - : Springer Nature. - 0957-4522 .- 1573-482X. ; 32:18, s. 23385-23398
  • Tidskriftsartikel (refereegranskat)abstract
    • Hollow nanostructures have attracted attention because of their unique physiochemical properties and broad potential applications in electronics, optics and photonics. In this study, a facile hydrothermal approach was developed to fabricate hollow ZnO microspheres via self-assembled rod-like nanostructures. The morphology-controlled synthesis was conducted by altering hydrothermal treatment temperature (150, 200 and 250 °C) in solutions containing zinc acetate dihydrate precursor and glycerol as the stabilizing agent. The morphological observations indicated that hydrothermally grown ZnO architectures could be reasonably adjusted by modulating hydrothermal reaction temperature. Possible growth routes are proposed to elucidate the formation process of ZnO microspheres with the rod-like nanostructures. Morphology-dependent absorbance and emission along with red-shifts with improved crystalline qualities were observed with increasing hydrothermal growth temperature. Kerr-type nonlinear optical characteristics examined using single-beam Z-scan technique in the near infrared spectral range under nanosecond Nd-YVO4 laser pulses showed positive values of nonlinear refraction providing an evidence of self-focusing behaviors at the excitation wavelength of 1064 nm in all the samples studied. The highest Kerr-type nonlinear susceptibility was estimated to be 2.31 × 10–6 esu for hollow ZnO microspheres grown at 250 °C, suggesting synergistic effects of surface morphologies on optical nonlinearities.
  •  
8.
  • Hait, S., et al. (författare)
  • Impact of ferromagnetic layer thickness on the spin pumping in Co60Fe20B20/Ta bilayer thin films
  • 2021
  • Ingår i: Journal of Materials Science-Materials in Electronics. - : Springer Science and Business Media LLC. - 0957-4522 .- 1573-482X. ; 32, s. 12453-12465
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the tuneable spin angular momentum transfer (spin pumping) from Co60Fe20B20 (CFB) amorphous alloy into the Ta heavy metal nanolayers. All the films are grown on Si (100) substrate at room temperature using ion-beam sputtering technique. Structural studies reveal that the grown Ta films over amorphous CFB are crystalline even at ultrathin regime. The bilayers possess very low interface roughness (< 0.5 nm) and are continuous throughout the thickness range. Comparative analysis of the spin pumping in CFB (4, 6 and 8 nm) as a function of the Ta thickness (vary from 1 to 10 nm in step of 1 nm) has been performed employing ferromagnetic resonance (FMR) spectroscopy. It is observed that the effective damping increase exponentially with the increase of Ta, (i.e. follows ballistic spin transport) in two series of CFB (4 nm)/Ta (0-10 nm) and CFB(6 nm)/Ta (0-10 nm) bilayers, which is characteristic of normal spin pumping. However, the anomalous behaviour has been observed for CFB (8 nm)/Ta (0-10 nm) bilayer series where the spin current generated in Ta with the thicker CFB behaves oppositely. The results demonstrate the strong dependence of ferromagnet thickness on the spin pumping into the Ta nanolayers. This study paves the way to choose suitable ferromagnetic layer thickness for spin current-induced switching applications in spintronics.
  •  
9.
  • Jlassi, Khouloud, et al. (författare)
  • Highly sensitive humidity sensor based on cadmium selenide quantum dots-polymer composites : synthesis, characterization, and effect of UV/ozone treatment
  • 2023
  • Ingår i: Journal of Materials Science: Materials in Electronics. - 0957-4522. ; 34:21
  • Tidskriftsartikel (refereegranskat)abstract
    • This work describes the rational design of thin film-based cadmium selenide quantum dots (CdSe) mixed with conductive polyvinylidene fluoride (PVDF), inducing PVDF-CdSe composite for potential resistive humidity-sensing applications. The effect of UV/ozone treatment on surface hydrophilicity and sensing properties was investigated. AFM has been performed to examine the prepared films' texture, distribution over the surface, and size. Overall, the hydrophilicity of the developed films increases with UV radiation exposure time, leading to enhanced water vapor absorption without deforming the film surface. The sensor's sensitivity is improved with increasing UV radiation exposure. The electrical response of the PVDF-CdSe humidity sensors after 30 min of UV/ozone treatment reveals that at higher humidity levels (i.e., > 80% RH), the sensors exhibit an irregular response. However, at 20 min, treatment increases sensitivity and a linear change in impedance response concerning humidity level change compared to other samples. The hysteresis response was divided into two regions: the lower region, between 30 and 60% RH—where the maximum hysteresis loss was calculated to be 3%. While the higher area between 60 and 90% RH, where the maximum estimated hysteresis loss of the PVDF-CdSe sensor is around 14%, the UV/ozone treatment of the PVDF-CdSe nanocomposite film was found to enhance the sensing film's hydrophilicity without deforming the surface of the as-prepared PVDF-CdSe as well as the UV-treated films validates a potential for novel humidity sensors.
  •  
10.
  • Kaur, A., et al. (författare)
  • Correlation between reduced dielectric loss and charge migration kinetics in NdFeO3-modified Ba0.7Sr0.3TiO3 ceramics
  • 2021
  • Ingår i: Journal of materials science. Materials in electronics. - : Springer Nature. - 0957-4522 .- 1573-482X. ; 32:20, s. 24910-24929
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study demonstrates the reduction in the dielectric loss at room temperature from 0.149 to 0.027 in the composite of (NdFeO3)0.1−(Ba0.7Sr0.3TiO3)0.9 as compared to the undoped Ba0.7Sr0.3TiO3 and correlates with the charge compensation due to the ionic substitutions for both A site (NdBa) and B (FeTi) site generated excess electrons, localized hole states and robust oxygen vacancies (VO) along with different cationic oxidation states. The VO mediated F center charge transfer mechanism i.e., bound magnetic polaronic behaviour and defect complex generated between acceptors and ionized VO reduce electrical conductivity and loss factor. The presence of weak ferromagnetism in the M-H loop reconfirms the F center exchange mechanism in mixed phase symmetry. The activation energy calculated from impedance spectroscopy, electrical modulus and electrical conductivity analysis supports the presence of doubly ionized VO. Further, density functional theory based first principle calculation manifests that the impurity induced depopulation of valence band edge electrons into a single spin up channel which distorts TiO6 octahedra with fluctuating bond length and Ti 3deg orbital splitting observed in decomposed density of states for accommodating excess electrons. These trapped and accommodated electrons reduce the effective electron concentration which in turn decreases the electrical conductivity and loss factor. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy