SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0968 0896 srt2:(2015-2019)"

Sökning: L773:0968 0896 > (2015-2019)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ballante, Flavio, et al. (författare)
  • Structural insights of SmKDAC8 inhibitors : Targeting Schistosoma epigenetics through a combined structure-based 3D QSAR, in vitro and synthesis strategy.
  • 2017
  • Ingår i: Bioorganic & Medicinal Chemistry. - : Elsevier BV. - 0968-0896 .- 1464-3391. ; 25:7, s. 2105-2132
  • Tidskriftsartikel (refereegranskat)abstract
    • A predictive structure-based 3D QSAR (COMBINEr 2.0) model of the Schistosoma mansoni lysine deacetylase 8 enzyme (SmKDAC8) was developed, validated and used to perform virtual screening (VS) of the NCI Diversity Set V database (1593 compounds). Three external datasets (with congeneric structures to those experimentally resolved in complexes by X-ray and previously reported as SmKDAC8 inhibitors) were employed to compose and validate the most predictive model. Two series characterized by 104 benzodiazepine derivatives (BZDs) and 60 simplified largazole analogs (SLAs), recently reported by our group as human KDAC inhibitors, were tested for their inhibition potency against SmKDAC8 to probe the predictive capability of the quantitative models against compounds with diverse structures. The SmKDAC8 biochemical results confirmed: (1) the benzodiazepine moiety as a valuable scaffold to further investigate when pursuing SmKDAC8 inhibition; (2) the predictive capability of the COMBINEr 2.0 model towards non-congeneric series of compounds, highlighting the most influencing ligand-protein interactions and refining the structure-activity relationships. From the VS investigations, the first 40 top-ranked compounds were obtained and biologically tested for their inhibition potency against SmKDAC8 and hKDACs 1, 3, 6 and 8. Among them, a non-hydroxamic acid benzothiadiazine dioxide derivative (code NSC163639), showed interesting activity and selectivity against SmKDAC8. To further elucidate the structure-activity relationships of NSC163639, two analogs (herein reported as compounds 3 and 4) were synthesized and biologically evaluated. Results suggest the benzothiadiazine dioxide moiety as a promising scaffold to be used in a next step to derive selective SmKDAC8 inhibitors.
  •  
2.
  • Belfrage, Anna Karin, et al. (författare)
  • Discovery of pyrazinone based compounds that potently inhibit the drug resistant enzyme variant R155K of the hepatitis C virus NS3 protease
  • 2016
  • Ingår i: Bioorganic & Medicinal Chemistry. - : Elsevier BV. - 0968-0896 .- 1464-3391. ; 24:12, s. 2603-2620
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, we present the design and synthesis of 2(1H)-pyrazinone based HCV NS3 protease inhibitors with variations in the C-terminus. Biochemical evaluation was performed using genotype 1a, both the wildtype and the drug resistant enzyme variant, R155K. Surprisingly, compounds without an acidic sulfonamide retained good inhibition, challenging our previous molecular docking model. Moreover, selected compounds in this series showed nanomolar potency against R155K NS3 protease; which generally confer resistance to all HCV NS3 protease inhibitors approved or in clinical trials. These results further strengthen the potential of this novel substance class, being very different to the approved drugs and clinical candidates, in the development of inhibitors less sensitive to drug resistance.
  •  
3.
  • Correia, Mário S. P., et al. (författare)
  • Comprehensive kinetic and substrate specificity analysis of an arylsulfatase from Helix pomatia using mass spectrometry
  • 2019
  • Ingår i: Bioorganic & Medicinal Chemistry. - : Elsevier BV. - 0968-0896 .- 1464-3391. ; 27:6, s. 955-962
  • Tidskriftsartikel (refereegranskat)abstract
    • Sulfatases hydrolyze sulfated metabolites to their corresponding alcohols and are present in all domains of life. These enzymes have found major application in metabolic investigation of drugs, doping control analysis and recently in metabolomics. Interest in sulfatases has increased due to a link between metabolic processes involving sulfated metabolites and pathophysiological conditions in humans. Herein, we present the first comprehensive substrate specificity and kinetic analysis of the most commonly used aryl sulfatases extracted from the snail Helix pomatia. In the past, this enzyme has been used in the form of a crude mixture of enzymes, however, recently we have purified this sulfatase for a new application in metabolomics-driven discovery of sulfated metabolites. To evaluate the substrate specificity of this promiscuous sulfatase, we have synthesized a series of new sulfated metabolites of diverse structure and employed a mass spectrometric assay for kinetic substrate hydrolysis evaluation. Our analysis of the purified enzyme revealed that the sulfatase has a strong preference for metabolites with a bi- or tricyclic aromatic scaffold and to a lesser extent for monocyclic aromatic phenols. This metabolite library and mass spectrometric method can be applied for the characterization of other sulfatases from humans and gut microbiota to investigate their involvement in disease development.
  •  
4.
  • De Rosa, Maria, et al. (författare)
  • Design, synthesis and in vitro biological evaluation of oligopeptides targeting E. coli type I signal peptidase (LepB)
  • 2017
  • Ingår i: Bioorganic & Medicinal Chemistry. - : Elsevier BV. - 0968-0896 .- 1464-3391. ; 25:3, s. 897-911
  • Tidskriftsartikel (refereegranskat)abstract
    • Type I signal peptidases are potential targets for the development of new antibacterial agents. Here we report finding potent inhibitors of E. coli type I signal peptidase (LepB), by optimizing a previously reported hit compound, decanoyl-PTANA-CHO, through modifications at the N- and C-termini. Good improvements of inhibitory potency were obtained, with IC50s in the low nanomolar range. The best inhibitors also showed good antimicrobial activity, with MICs in the low μg/mL range for several bacterial species. The selection of resistant mutants provided strong support for LepB as the target of these compounds. The cytotoxicity and hemolytic profiles of these compounds are not optimal but the finding that minor structural changes cause the large effects on these properties suggests that there is potential for optimization in future studies.
  •  
5.
  • Kaiser, Nadine, et al. (författare)
  • Modulation of autophagy by the novel mitochondrial complex I inhibitor Authipyrin
  • 2019
  • Ingår i: Bioorganic & Medicinal Chemistry. - : Elsevier BV. - 0968-0896 .- 1464-3391. ; 27:12, s. 2444-2448
  • Tidskriftsartikel (refereegranskat)abstract
    • Autophagy ensures cellular homeostasis by the degradation of long-lived proteins, damaged organelles and pathogens. This catabolic process provides essential cellular building blocks upon nutrient deprivation. Cellular metabolism, especially mitochondrial respiration, has a significant influence on autophagic flux, and complex I function is required for maximal autophagy. In Parkinson’s disease mitochondrial function is frequently impaired and autophagic flux is altered. Thus, dysfunctional organelles and protein aggregates accumulate and cause cellular damage. In order to investigate the interdependency between mitochondrial function and autophagy, novel tool compounds are required. Herein, we report the discovery of a structurally novel autophagy inhibitor (Authipyrin) using a high content screening approach. Target identification and validation led to the discovery that Authipyrin targets mitochondrial complex I directly, leading to the potent inhibition of mitochondrial respiration as well as autophagy.
  •  
6.
  • Marsh, D. T., et al. (författare)
  • Structure-activity relationships for flavone interactions with amyloid beta reveal a novel anti-aggregatory and neuroprotective effect of 2 ',3 ',4 '-trihydroxyflavone (2-D08)
  • 2017
  • Ingår i: Bioorganic & Medicinal Chemistry. - : Elsevier BV. - 0968-0896. ; 25:14, s. 3827-3834
  • Tidskriftsartikel (refereegranskat)abstract
    • Naturally-occurring flavonoids have well documented anti-aggregatory and neuroprotective properties against the hallmark toxic protein in Alzheimer's disease, amyloid beta (A beta). However the extensive diversity of flavonoids has limited the insight into the precise structure-activity relationships that confer such bioactive properties against the A beta protein. In the present study we have characterised the A beta binding properties, anti-aggregatory and neuroprotective effects of a discreet set of flavones, including the recently described novel protein sumoylation inhibitor 2',3',4'-trihydroxyflavone (2-D08). Quercetin, transilitin, jaceosidin, nobiletin and 2-D08 were incubated with human A beta(1-42) for 48 h in vitro and effects on AB fibrillisation kinetics and morphology measured using Thioflavin T (ThT) and electron microscopy respectively, in addition to effects on neuronal PC12 cell viability. Of the flavones studied, only quercetin, transilitin and 2-D08 significantly inhibited A beta(1-42) aggregation and toxicity in PC12 cells. Of those, 2-D08 was the most effective inhibitor. The strong anti-amyloid activity of 2-D08 indicates that extensive hydroxylation in the B ring is the most important determinant of activity against beta amyloid within the flavone scaffold. The lack of efficacy of jaceosidin and nobiletin indicate that extension of B ring hydroxylation with methoxyl groups result in an incremental loss of anti-fibrillar and neuroprotective activity, highlighting the constraint to vicinal hydroxyl groups in the B ring for effective inhibition of aggregation. These findings reveal further structural insights into anti-amyloid bioactivity of flavonoids in addition to a novel and efficacious anti-aggregatory and neuroprotective effect of the semi-synthetic flavone and sumoylation inhibitor 2',3',4'-trihydroxyflavone (2-D08). Such modified flavones may facilitate drug development targeting multiple pathways in neurodegenerative disease. Crown Copyright (C) 2017 Published by Elsevier Ltd. All rights reserved.
  •  
7.
  • Martínez, Alberto, et al. (författare)
  • Novel multi-target compounds in the quest for new chemotherapies against Alzheimer's disease : An experimental and theoretical study
  • 2018
  • Ingår i: Bioorganic and Medicinal Chemistry. - : Elsevier BV. - 0968-0896. ; 26:17, s. 4823-4840
  • Tidskriftsartikel (refereegranskat)abstract
    • The lack of any effective therapy along with the aging world population anticipates a growth of the worldwide incidence of Alzheimer's disease (AD) to more than 100 million cases by 2050. Accumulation of extracellular amyloid-β (Aβ) plaques, intracellular tangles in the brain, and formation of reactive oxygen species (ROS) are the major hallmarks of the disease. In the amyloidogenic process, a β-secretase, known as BACE 1, plays a fundamental role in the production of Aβ fragments, and therefore, inhibition of such enzymes represents a major strategy for the rational design of anti-AD drugs. In this work, a series of four multi-target compounds (1–4), inspired by previously described ionophoric polyphenols, have been synthesized and studied. These compounds have been designed to target important aspects of AD, including BACE 1 enzymatic activity, Aβ aggregation, toxic concentrations of Cu2+ metal ions and/or ROS production. Two other compounds (5 and 6), previously reported by some of us as antimalarial agents, have also been studied because of their potential as multi-target species against AD. Interestingly, compounds 3 and 5 showed moderate to good ability to inhibit BACE 1 enzymatic activity in a FRET assay, with IC50′s in the low micromolar range (4.4 ± 0.3 and 1.7 ± 0.3 μM, respectively), comparable to other multi-target species, and showing that the observed activity was in part due to a competitive binding of the compounds at the active site of the enzyme. Theoretical docking calculations overall agreed with FRET assay results, displaying the strongest binding affinities for 3 and 5 at the active site of the enzyme. In addition, all compounds selectively interacted with Cu2+ metal ions forming 2:1 complexes, inhibited the production of Aβ-Cu2+ catalyzed hydroxyl radicals up to a ∼100% extent, and scavenged AAPH-induced peroxyl radical species comparably to resveratrol, a compound used as reference in this work. Our results also show good anti-amyloidogenic ability: compounds 1–6 inhibited both the Cu2+-induced and self-induced Aβ(1–40) fibril aggregation to an extent that ranged from 31% to 77%, while they disaggregated pre-formed Aβ(1–40) mature fibrils up to a 37% and a 69% extent in absence and presence of Cu2+, respectively. Cytotoxicity was additionally studied in Tetrahymena thermophila and HEK293 cells, and compared to that of resveratrol, showing that compounds 1–6 display lower toxicity than that of resveratrol, a well-known non-toxic polyphenol.
  •  
8.
  • Pikuła, Michał, et al. (författare)
  • Cystatin C peptidomimetic derivative with antimicrobial properties as a potential compound against wound infections
  • 2017
  • Ingår i: Bioorganic and Medicinal Chemistry. - : Elsevier BV. - 0968-0896. ; 25:4, s. 1431-1439
  • Tidskriftsartikel (refereegranskat)abstract
    • A peptidomimetic called A20 (Cystapep 1) structurally based upon the N-terminal fragment of human cystatin C is known to have strong antibacterial properties. A20 is characterized by high activity against several bacterial strains often isolated from infected wounds, including methicillin-resistant S. aureus (MRSA). In this work we wanted to explore the therapeutic potential of A20 in the treatment of wound infections. We examined, cytotoxicity, allergenicity and impact of A20 on the proliferation and viability of human keratinocytes. Furthermore, the previously described antimicrobial action of A20. has been confirmed here with reference strains of bacteria and extended by several other species. The A20 was highly active against Gram-positive bacteria with minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC) between 8 and 128. μg/mL. A20 did not affect proliferation of primary human keratinocytes in concentrations up to 50. μg/mL. At the same time, it did not activate Peripheral Blood Mononuclear Cells (PBMCs), including basophils or neutrophils in vitro. Interestingly A20 was found to display immunomodulatory functions as it influences the production of Th2 cytokines (IL-4 and IL-13) by activated PBMCs. It was also resistant to degradation for at least 48. h in human plasma. The results indicate that A20 is effective against the multiantibiotic-resistant bacteria and has a high safety profile, which makes it a promising antimicrobial drug candidate.
  •  
9.
  • Roslin, Sara, et al. (författare)
  • Synthesis and In Vitro Evaluation of 5-Substituted Benzovesamicol Analogs containing N-Substituted Amides as Potential Positron Emission Tomography Tracers for the Vesicular Acetylcholine Transporter
  • 2017
  • Ingår i: Bioorganic & Medicinal Chemistry. - : Elsevier BV. - 0968-0896 .- 1464-3391. ; 25:19, s. 5095-5106
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, new ligands for the vesicular acetylcholine transporter (VAChT), based on a benzovesamicol scaffold, are presented. VAChT is acknowledged as a marker for cholinergic neurons and a positron emission tomography tracer for VAChT could serve as a tool for quantitative analysis of cholinergic neuronal density. With an easily accessible triflate precursor, aminocarbonylations were utilized to evaluate the chemical space around the C5 position on the tetrahydronaphthol ring. Synthesized ligands were evaluated for their affinity and selectivity for VAChT. Small, preferably aromatic, N-substituents proved to be more potent than larger substituents. Of the fifteen compounds synthesized, benzyl derivatives (+/-)-7i and (+/-)-7l had the highest affinities for VAChT. Compound (+/-)-7i was chosen to investigate the importance of stereochemistry for binding to VAChT and selectivity toward the sigma(1) and sigma(2) receptors. Enantiomeric resolution gave (+/-)-7i and (-)-7i, and the eutomer showed seven times better affinity. Although racemate (+/-)-7i was initially promising, the affinity of (-)-7i for VAChT was not better than 56.7 nM which precludes further preclinical evaluation. However, the nanomolar binding together with the ready synthesis of [C-11]-(+/-)-7i shows that (-)-7i can serve as a scaffold for future optimizations to provide improved C-11-labelled VAChT PET tracers.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy