SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0992 7689 OR L773:1432 0576 srt2:(2000-2004)"

Sökning: L773:0992 7689 OR L773:1432 0576 > (2000-2004)

  • Resultat 1-10 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aikio, A. T., et al. (författare)
  • Temporal evolution of two auroral arcs as measured by the Cluster satellite and coordinated ground-based instruments
  • 2004
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 22:12, s. 4089-4101
  • Tidskriftsartikel (refereegranskat)abstract
    • The four Cluster s/c passed over Northern Scandinavia on 6 February 2001 from south-east to north-west at a radial distance of about 4.4 R-E in the post-midnight sector. When mapped along geomagnetic field lines, the separation of the spacecraft in the ionosphere was confined to within 110 km in latitude and 50 km in longitude. This constellation allowed us to study the temporal evolution of plasma with a time scale of a few minutes. Ground-based instrumentation used involved two all-sky cameras, magnetometers and the EISCAT radar. The main findings were as follows. Two auroral arcs were located close to the equatorward and poleward edge of a large-scale density cavity, respectively. These arcs showed a different kind of a temporal evolution. (1) As a response to a pseudo-breakup onset, both the up- and downward field-aligned current (FAC) sheets associated with the equatorward arc widened and the total amount of FAC doubled in a time scale of 1-2 min. (2) In the poleward arc, a density cavity formed in the ionosphere in the return (downward) current region. As a result of ionospheric feedback, a strongly enhanced ionospheric southward electric field developed in the region of decreased Pedersen conductance. Furthermore, the acceleration potential of ionospheric electrons, carrying the return current, increased from 200 to 1000 eV in 70 s, and the return current region widened in order to supply a constant amount of return current to the arc current circuit. Evidence of local acceleration of the electron population by dispersive Alfven waves was obtained in the upward FAC region of the poleward arc. However, the downward accelerated suprathermal electrons must be further energised below Cluster in order to be able to produce the observed visible aurora. Both of the auroral arcs were associated with broad-band ULF/ELF (BBELF) waves, but they were highly localised in space and time. The most intense BBELF waves were confined typically to the return current regions adjacent to the visual arc, but in one case also to a weak upward FAC region. BBELF waves could appear/disappear between s/c crossings of the same arc separated by about 1 min.
  •  
2.
  • Andre, M., et al. (författare)
  • Multi-spacecraft observations of broadband waves near the lower hybrid frequency at the Earthward edge of the magnetopause
  • 2001
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 19:12-okt, s. 1471-1481
  • Tidskriftsartikel (refereegranskat)abstract
    • Broadband waves around the lower hybrid frequency (around 10 Hz) near the magnetopause are studied, using the four Cluster satellites. These waves are common at the Earthward edge of the boundary layer, consistent with earlier observations, and can have amplitudes at least up to 5 mV/m. These waves are similar on all four Cluster satellites, i.e. they are likely to be distributed over large areas of the boundary. The strongest electric fields occur during a few seconds, i.e. over distances of a few hundred km in the frame of the moving magnetopause, a scale length comparable to the ion gyroradius. The strongest magnetic oscillations in the same frequency range are typically found in the boundary layer, and across the magnetopause. During an event studied in detail, the magnetopause velocity is consistent with a large-scale depression wave, i.e. an inward bulge of magnetosheath plasma, moving tailward along the nominal magnetopause boundary. Preliminary investigations indicate that a rather flat front side of the large-scale wave is associated with a rather static small-scale electric field, while a more turbulent backside of the large-scale wave is associated with small-scale time varying electric field wave packets.
  •  
3.
  •  
4.
  • Barabash, Victoria (författare)
  • Are variations in PMSE intensity affected by energetic particle precipitation?
  • 2002
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 20, s. 539-545
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract. The correlation between variations in Polar Mesosphere Summer Echoes (PMSE) and variations in energetic particle precipitation is examined. PMSE were observed by the Esrange VHF MST Radar (ESRAD) at 67°53' N, 21°06' E. The 30 MHz riometer in Abisko (68°24' N, 18°54' E) registered radio wave absorption caused by ionization changes in response to energetic particle precipitation. The relationship between the linear PMSE intensity and the square of absorption has been estimated using the Pearson linear correlation and the Spearman rank correlation. The mean diurnal variation of the square of absorption and the linear PMSE intensity are highly correlated. However, their day-to-day variations show significant correlation only during the late evening hours. The correlation in late evening does not exceed 0.6. This indicates that varying ionization cannot be considered as a primary source of varying PMSE, and the high correlation found when mean diurnal variations are compared is likely a by-product of daily variations caused by other factors.Key words. Ionosphere (particle precipitation) Magnetospheric physics (energetic particles, precipitating) Meteorology and atmospheric dynamics (precipitation)
  •  
5.
  • Barabash, Victoria, et al. (författare)
  • Polar mesosphere summer echoes during the July 2000 solar proton event
  • 2004
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 22:3, s. 759-771
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of the solar proton event (SPE) 14-16 July 2000 on Polar Mesosphere Summer Echoes (PMSE) is examined. PMSE were observed by the Esrange VHF MST Radar (ESRAD) at 67°53'N, 21°06'E. The 30MHz Imaging Riometer for Ionospheric Studies IRIS in Kilpisjärvi (69°30'N, 20°47'E) registered cosmic radio noise absorption caused by ionisation changes in response to the energetic particle precipitation. An energy deposition/ion-chemical model was used to estimate the density of free electrons and ions in the upper atmosphere. Particle collision frequencies were calculated from the MSISE-90 model. Electric fields were calculated using conductivities from the model and measured magnetic disturbances. The electric field reached a maximum of 91mV/m during the most intensive period of the geomagnetic storm accompanying the SPE. The temperature increase due to Joule and particle heating was calculated, taking into account radiative cooling. The temperature increase at PMSE heights was found to be very small. The observed PMSE were rather intensive and extended over the 80-90km height interval. PMSE almost disappeared above 86km at the time of greatest Joule heating on 15 July 2000. Neither ionisation changes, nor Joule/particle heating can explain the PMSE reduction. Transport effects due to the strong electric field are a more likely explanation.
  •  
6.
  • Blomberg, Lars G., et al. (författare)
  • EMMA - the electric and magnetic monitor of the aurora on Astrid-2
  • 2004
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 22:1, s. 115-123
  • Tidskriftsartikel (refereegranskat)abstract
    • The Astrid-2 mission has dual primary objectives. First, it is an orbiting instrument platform for studying auroral electrodynamics. Second, it is a technology demonstration of the feasibility of using micro-satellites for innovative space plasma physics research. The EMMA instrument, which we discuss in the present paper, is designed to provide simultaneous sampling of two electric and three magnetic field components up to about 1 kHz. The spin plane components of the electric field are measured by two pairs of opposing probes extended by wire booms with a separation distance of 6.7 m. The probes have titanium nitride (TiN) surfaces. which has proved to be a material with excellent properties for providing good electrical contact between probe and plasma. The wire booms are of a new design in which the booms in the stowed position are wound around the exterior of the spacecraft body. The boom system was flown for the first time on this mission and worked flawlessly. The magnetic field is measured by a tri-axial fluxgate sensor located at the tip of a rigid. hinged boom extended along the spacecraft spin axis and facing away from the Sun. The new advanced-design fluxgate magnetometer uses digital signal processors for detection and feedback, thereby reducing the analogue circuitry to a minimum. The instrument characteristics as well as a brief review of the science accomplished and planned are presented.
  •  
7.
  • Borälv, E., et al. (författare)
  • The dawn and dusk electrojet response to substorm onset
  • 2000
  • Ingår i: Annales Geophysicae. - 0992-7689 .- 1432-0576. ; 18:9, s. 1097-1107
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the time delay between substorm onset and related reactions in the dawn and dusk ionospheric electrojets, clearly separated from the nightside located substorm current wedge by several hours in MLT. We looked for substorm onsets occurring over Greenland, where the onset was identified by a LANL satellite and DMI magnetometers located on Greenland. With this setup the MARIA magnetometer network was located at dusk, monitoring the eastward electrojet, and the IMAGE chain at dawn, for the westward jet. In the first few minutes following substorm onset, sudden enhancements of the electrojets were identified by looking for rapid changes in magnetograms. These results show that the speed of information transfer between the region of onset and the dawn and dusk ionosphere is very high. A number of events where the reaction seemed to preceed the onset were explained by either unfavorable instrument locations, preventing proper onset timing, or by the inner magnetosphere's reaction to the Earthward fast flows from the near-Earth neutral line model. Case studies with ionospheric coherent (SuperDARN) and incoherent (EISCAT) radars have been performed to see whether a convection-induced electric field or enhanced conductivity is the main agent for the reactions in the electrojets. The results indicate an imposed electric field enhancement.
  •  
8.
  • Collier, Andrew, et al. (författare)
  • Modelling substorm chorus events in terms of dispersive azimuthal drift
  • 2004
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 22:12, s. 4311-4327
  • Tidskriftsartikel (refereegranskat)abstract
    • The Substorm Chorus Event (SCE) is a radio phenomenon observed on the ground after the onset of the substorm expansion phase. It consists of a band of VLF chorus with rising upper and lower cutoff frequencies. These emissions are thought to result from Doppler-shifted cyclotron resonance between whistler mode waves and energetic electrons which drift into a ground station's field of view from an injection site around midnight. The increasing frequency of the emission envelope has been attributed to the combined effects of energy dispersion due to gradient and curvature drifts, and the modification of resonance conditions and variation of the half-gyrofrequency cutoff resulting from the radial component of the E x B drift. A model is presented which accounts for the observed features of the SCE in terms of the growth rate of whistler mode waves due to anisotropy in the electron distribution. This model provides an explanation for the increasing frequency of the SCE lower cutoff, as well as reproducing the general frequency-time signature of the event. In addition, the results place some restrictions on the injected particle source distribution which might lead to a SCE.
  •  
9.
  • Cumnock, Judy A., et al. (författare)
  • Transpolar arc evolution and associated potential patterns
  • 2004
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 22:4, s. 1213-1231
  • Tidskriftsartikel (refereegranskat)abstract
    • We present two event studies encompassing detailed relationships between plasma convection, field-aligned current, auroral emission, and particle precipitation boundaries. We illustrate the influence of the Interplanetary Magnetic Field B, component on theta aurora development by showing two events during which the theta originates on both the dawn and dusk sides of the aurora] oval. Both theta then move across the entire polar region and become part of the opposite side of the aurora] oval. Electric and magnetic field and precipitating particle data are provided by DMSP, while the Polar UVI instrument provides measurements of auroral emissions. Utilizing satellite data as inputs, the Royal Institute of Technology model provides the high-latitude ionospheric electrostatic potential pattern calculated at different times during the evolution of the theta aurora, resulting from a variety of field-aligned current configurations associated with the changing global aurora.
  •  
10.
  • Eriksson, Stefan, et al. (författare)
  • Magnetospheric response to the solar wind as indicated by the cross-polar potential drop and the low-latitude asymmetric disturbance field
  • 2001
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 19:6, s. 649-653
  • Tidskriftsartikel (refereegranskat)abstract
    • The cross-polar potential drop Phi (pc), and the low-latitude asymmetric geomagnetic disturbance field, as indicated by the mid-latitude ASY-H magnetic index, are used to study the average magnetospheric response to the solar wind forcing for southward interplanetary magnetic field conditions. The state of the solar wind is monitored by the ACE spacecraft and the ionospheric convection is measured by the double probe electric field instrument on the Astrid-2 satellite. The solar wind-magnetosphere coupling is examined for 77 cases in February and from mid-May to mid-June 1999 by using the interplanetary magnetic field B-z component and the reconnection electric field. Our results show that the maximum correlation between Phi (pc) and the reconnection electric field is obtained approximately 25 min after the solar wind has reached a distance of II R-E from the Earth, which is the assumed average position of the magnetopause. The corresponding correlation for ASY-H shows two separate responses to the reconnection electric field, delayed by about 35 and 65 min, respectively. We suggest that the combination of the occurrence of a large magnetic storm on 18 February 1999 and the enhanced level of geomagnetic activity which peaks at Kp = 7(-) may explain the fast direct response of ASY-H to the solar wind at 35 min, as well as the lack of any clear secondary responses of Phi (pc) to the driving solar wind at time delays longer than 25 min.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 41

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy