SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0999 193X OR L773:1297 9686 srt2:(2015-2019)"

Sökning: L773:0999 193X OR L773:1297 9686 > (2015-2019)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amuzu, Esinam, et al. (författare)
  • Predicting heterosis for egg production traits in crossbred offspring of individual White Leghorn sires using genome-wide SNP data
  • 2015
  • Ingår i: Genetics Selection Evolution. - : Springer Science and Business Media LLC. - 0999-193X .- 1297-9686. ; 47
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The development of a reliable method to predict heterosis would greatly improve the efficiency of commercial crossbreeding schemes. Extending heterosis prediction from the line level to the individual sire level would take advantage of variation between sires from the same pure line, and further increase the use of heterosis in crossbreeding schemes. We aimed at deriving the theoretical expectation for heterosis due to dominance in the crossbred offspring of individual sires, and investigating how much extra variance in heterosis can be explained by predicting heterosis at the individual sire level rather than at the line level. We used 53 421 SNP (single nucleotide polymorphism) genotypes of 3427 White Leghorn sires, allele frequencies of six White Leghorn dam-lines and cage-based records on egg number and egg weight of ~210 000 crossbred hens. Results: We derived the expected heterosis for the offspring of individual sires as the between- and within-line genome-wide heterozygosity excess in the offspring of a sire relative to the mean heterozygosity of the pure lines. Next, we predicted heterosis by regressing offspring performance on the heterozygosity excess. Predicted heterosis ranged from 7.6 to 16.7 for egg number, and from 1.1 to 2.3 grams for egg weight. Between-line differences accounted for 99.0% of the total variance in predicted heterosis, while within-line differences among sires accounted for 0.7%. Conclusions: We show that it is possible to predict heterosis at the sire level, thus to distinguish between sires within the same pure line with offspring that show different levels of heterosis. However, based on our data, variation in genome-wide predicted heterosis between sires from the same pure line was small; most differences were observed between lines. We hypothesise that this method may work better if predictions are based on SNPs with identified dominance effects.
  •  
2.
  •  
3.
  • Bélteky, Johan, et al. (författare)
  • Epigenetics and early domestication: differences in hypothalamic DNA methylation between red junglefowl divergently selected for high or low fear of humans
  • 2018
  • Ingår i: Genetics Selection Evolution. - : BIOMED CENTRAL LTD. - 0999-193X .- 1297-9686. ; 50
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Domestication of animals leads to large phenotypic alterations within a short evolutionary time-period. Such alterations are caused by genomic variations, yet the prevalence of modified traits is higher than expected if they were caused only by classical genetics and mutations. Epigenetic mechanisms may also be important in driving domesticated phenotypes such as behavior traits. Gene expression can be modulated epigenetically by mechanisms such as DNA methylation, resulting in modifications that are not only variable and susceptible to environmental stimuli, but also sometimes transgenerationally stable. To study such mechanisms in early domestication, we used as model two selected lines of red junglefowl (ancestors of modern chickens) that were bred for either high or low fear of humans over five generations, and investigated differences in hypothalamic DNA methylation between the two populations. Results: Twenty-two 1-kb windows were differentially methylated between the two selected lines at p amp;lt; 0.05 after false discovery rate correction. The annotated functions of the genes within these windows indicated epigenetic regulation of metabolic and signaling pathways, which agrees with the changes in gene expression that were previously reported for the same tissue and animals. Conclusions: Our results show that selection for an important domestication-related behavioral trait such as tameness can cause divergent epigenetic patterns within only five generations, and that these changes could have an important role in chicken domestication.
  •  
4.
  • De Koning, Dirk-Jan (författare)
  • A 0.5‑Mbp deletion on bovine chromosome 23 is a strong candidate for stillbirth in Nordic Red cattle
  • 2016
  • Ingår i: Genetics Selection Evolution. - : Springer Science and Business Media LLC. - 0999-193X .- 1297-9686. ; 48
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A whole-genome association study of 4631 progeny-tested Nordic Red dairy cattle bulls using imputed next-generation sequencing data revealed a major quantitative trait locus (QTL) that affects birth index (BI) on Bos taurus autosome (BTA)23. We analyzed this QTL to identify which of the component traits of BI are affected and understand its molecular basis. Results: A genome-wide scan of BI in Nordic Red dairy cattle detected major QTL on BTA6, 14 and 23. The strongest associated single nucleotide polymorphism (SNP) on BTA23 was located at 13,313,896 bp with -log10(p) = 50.63. Analyses of component traits showed that the QTL had a large effect on stillbirth. Based on the 10 most strongly associated SNPs with stillbirth, we constructed a haplotype. Among this haplotype's alleles, HAPQTL had a large negative effect on stillbirth. No animals were found to be homozygous for HAPQTL. Analysis of stillbirth records that were categorized by carrier status for HAPQTL of the sire and maternal grandsire suggested that this haplotype had a recessive mode of inheritance. Illumina BovineHD BeadChip genotypes and genotype intensity data indicated a chromosomal deletion between 12.28 and 12.81 Mbp on BTA23. An independent set of Illumina Bovine50k BeadChip genotypes identified a recessive lethal haplotype that spanned the deleted region. Conclusions: A deleted region of approximately 500 kb that spans three genes on BTA23 was identified and is a strong candidate QTL with a large effect on BI by increasing stillbirth.
  •  
5.
  • De Koning, Dirk-Jan (författare)
  • Transcriptional profile of breast muscle in heat stressed layers is similar to that of broiler chickens at control temperature
  • 2017
  • Ingår i: Genetics Selection Evolution. - : Springer Science and Business Media LLC. - 0999-193X .- 1297-9686. ; 49
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In recent years, the commercial importance of changes in muscle function of broiler chickens and of the corresponding effects on meat quality has increased. Furthermore, broilers are more sensitive to heat stress during transport and at high ambient temperatures than smaller egg-laying chickens. We hypothesised that heat stress would amplify muscle damage and expression of genes that are involved in such changes and, thus, lead to the identification of pathways and networks associated with broiler muscle and meat quality traits. Broiler and layer chickens were exposed to control or high ambient temperatures to characterise differences in gene expression between the two genotypes and the two environments.Results: Whole-genome expression studies in breast muscles of broiler and layer chickens were conducted before and after heat stress; 2213 differentially-expressed genes were detected based on a significant (P < 0.05) genotype x treatment interaction. This gene set was analysed with the BioLayout Express(3D) and Ingenuity Pathway Analysis software and relevant biological pathways and networks were identified. Genes involved in functions related to inflammatory reactions, cell death, oxidative stress and tissue damage were upregulated in control broilers compared with control and heat-stressed layers. Expression of these genes was further increased in heat-stressed broilers.Conclusions: Differences in gene expression between broiler and layer chickens under control and heat stress conditions suggest that damage of breast muscles in broilers at normal ambient temperatures is similar to that in heat-stressed layers and is amplified when broilers are exposed to heat stress. The patterns of gene expression of the two genotypes under heat stress were almost the polar opposite of each other, which is consistent with the conclusion that broiler chickens were not able to cope with heat stress by dissipating their body heat. The differentially expressed gene networks and pathways were consistent with the pathological changes that are observed in the breast muscle of heat-stressed broilers.
  •  
6.
  • Hong, Thu Le (författare)
  • Genome-wide association study for conformation traits in three Danish pig breeds
  • 2017
  • Ingår i: Genetics Selection Evolution. - : Springer Science and Business Media LLC. - 0999-193X .- 1297-9686. ; 49
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Selection for sound conformation has been widely used as a primary approach to reduce lameness and leg weakness in pigs. Identification of genomic regions that affect conformation traits would help to improve selection accuracy for these lowly to moderately heritable traits. Our objective was to identify genetic factors that underlie leg and back conformation traits in three Danish pig breeds by performing a genome-wide association study followed by meta-analyses. Methods: Data on four conformation traits (front leg, back, hind leg and overall conformation) for three Danish pig breeds (23,898 Landrace, 24,130 Yorkshire and 16,524 Duroc pigs) were used for association analyses. Estimated effects of single nucleotide polymorphisms (SNPs) from single-trait association analyses were combined in two metaanalyses: (1) a within-breed meta-analysis for multiple traits to examine if there are pleiotropic genetic variants within a breed; and (2) an across-breed meta-analysis for a single trait to examine if the same quantitative trait loci (QTL) segregate across breeds. SNP annotation was implemented through Sus scrofa Build 10.2 on Ensembl to search for candidate genes. Results: Among the 14, 12 and 13 QTL that were detected in the single-trait association analyses for the three breeds, the most significant SNPs explained 2, 2.3 and 11.4% of genetic variance for back quality in Landrace, overall conformation in Yorkshire and back quality in Duroc, respectively. Several candidate genes for these QTL were also identified, i.e. LRPPRC, WRAP73, VRTN and PPARD likely control conformation traits through the regulation of bone and muscle development, and IGF2BP2, GH1, CCND2 and MSH2 can have an influence through growth-related processes. Meta-analyses not only confirmed many significant SNPs from single-trait analyses with higher significance levels, but also detected several additional associated SNPs and suggested QTL with possible pleiotropic effects. Conclusions: Our results imply that conformation traits are complex and may be partly controlled by genes that are involved in bone and skeleton development, muscle and fat metabolism, and growth processes. A reliable list of QTL and candidate genes was provided that can be used in fine-mapping and marker assisted selection to improve conformation traits in pigs.
  •  
7.
  • Johnsson, Martin (författare)
  • Analysis of a large dataset reveals haplotypes carrying putatively recessive lethal and semi-lethal alleles with pleiotropic effects on economically important traits in beef cattle
  • 2019
  • Ingår i: Genetics Selection Evolution. - : Springer Science and Business Media LLC. - 0999-193X .- 1297-9686. ; 51
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundIn livestock, deleterious recessive alleles can result in reduced economic performance of homozygous individuals in multiple ways, e.g. early embryonic death, death soon after birth, or semi-lethality with incomplete penetrance causing reduced viability. While death is an easy phenotype to score, reduced viability is not as easy to identify. However, it can sometimes be observed as reduced conception rates, longer calving intervals, or lower survival for live born animals.MethodsIn this paper, we searched for haplotypes that carry putatively recessive lethal or semi-lethal alleles in 132,725 genotyped Irish beef cattle from five breeds: Aberdeen Angus, Charolais, Hereford, Limousin, and Simmental. We phased the genotypes in sliding windows along the genome and used five tests to identify haplotypes with absence of or reduced homozygosity. Then, we associated the identified haplotypes with 44,351 insemination records that indicated early embryonic death, and postnatal survival records. Finally, we assessed haplotype pleiotropy by estimating substitution effects on estimates of breeding value for 15 economically important traits in beef production.ResultsWe found support for one haplotype that carries a putatively recessive lethal (chromosome 16 in Simmental) and two haplotypes that carry semi-lethal alleles (chromosome 14 in Aberdeen Angus and chromosome 19 in Charolais), with population frequencies of 8.8, 15.2, and 14.4%, respectively. These three haplotypes showed pleiotropic effects on economically important traits for beef production. Their allele substitution effects are Euro2.30, Euro3.42, and Euro1.47 for the terminal index and Euro1.03, -Euro3.11, and -Euro0.88 for the replacement index, where the standard deviations for the terminal index are Euro22.52, Euro18.65, and Euro22.70 and for the replacement index they are Euro31.35, Euro29.82, and Euro35.79. We identified ZFAT as the candidate gene for semi-lethality in Aberdeen Angus, several candidate genes for the lethal Simmental haplotype, and no candidate genes for the semi-lethal Charolais haplotype.ConclusionsWe analysed genotype, reproduction, survival, and production data to detect haplotypes that carry putatively recessive lethal or semi-lethal alleles in Irish beef cattle and identified one lethal and two semi-lethal haplotypes, which have pleiotropic effects on economically important traits in beef production.
  •  
8.
  • Johnsson, Martin (författare)
  • Impact of index hopping and bias towards the reference allele on accuracy of genotype calls from low-coverage sequencing
  • 2018
  • Ingår i: Genetics Selection Evolution. - : Springer Science and Business Media LLC. - 0999-193X .- 1297-9686. ; 50
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundInherent sources of error and bias that affect the quality of sequence data include index hopping and bias towards the reference allele. The impact of these artefacts is likely greater for low-coverage data than for high-coverage data because low-coverage data has scant information and many standard tools for processing sequence data were designed for high-coverage data. With the proliferation of cost-effective low-coverage sequencing, there is a need to understand the impact of these errors and bias on resulting genotype calls from low-coverage sequencing.ResultsWe used a dataset of 26 pigs sequenced both at 2x with multiplexing and at 30x without multiplexing to show that index hopping and bias towards the reference allele due to alignment had little impact on genotype calls. However, pruning of alternative haplotypes supported by a number of reads below a predefined threshold, which is a default and desired step of some variant callers for removing potential sequencing errors in high-coverage data, introduced an unexpected bias towards the reference allele when applied to low-coverage sequence data. This bias reduced best-guess genotype concordance of low-coverage sequence data by 19.0 absolute percentage points.ConclusionsWe propose a simple pipeline to correct the preferential bias towards the reference allele that can occur during variant discovery and we recommend that users of low-coverage sequence data be wary of unexpected biases that may be produced by bioinformatic tools that were designed for high-coverage sequence data.
  •  
9.
  • Johnsson, Martin, et al. (författare)
  • Removal of alleles by genome editing (RAGE) against deleterious load
  • 2019
  • Ingår i: Genetics Selection Evolution. - : Springer Science and Business Media LLC. - 0999-193X .- 1297-9686. ; 51
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundIn this paper, we simulate deleterious load in an animal breeding program, and compare the efficiency of genome editing and selection for decreasing it. Deleterious variants can be identified by bioinformatics screening methods that use sequence conservation and biological prior information about protein function. However, once deleterious variants have been identified, how can they be used in breeding?ResultsWe simulated a closed animal breeding population that is subject to both natural selection against deleterious load and artificial selection for a quantitative trait representing the breeding goal. Deleterious load was polygenic and was due to either codominant or recessive variants. We compared strategies for removal of deleterious alleles by genome editing (RAGE) to selection against carriers. When deleterious variants were codominant, the best strategy for prioritizing variants was to prioritize low-frequency variants. When deleterious variants were recessive, the best strategy was to prioritize variants with an intermediate frequency. Selection against carriers was inefficient when variants were codominant, but comparable to editing one variant per sire when variants were recessive.ConclusionsGenome editing of deleterious alleles reduces deleterious load, but requires the simultaneous editing of multiple deleterious variants in the same sire to be effective when deleterious variants are recessive. In the short term, selection against carriers is a possible alternative to genome editing when variants are recessive. Our results suggest that, in the future, there is the potential to use RAGE against deleterious load in animal breeding.
  •  
10.
  • Johnsson, Martin (författare)
  • Sequence variation, evolutionary constraint, and selection at the CD163 gene in pigs
  • 2018
  • Ingår i: Genetics Selection Evolution. - : Springer Science and Business Media LLC. - 0999-193X .- 1297-9686. ; 50
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundIn this work, we investigated sequence variation, evolutionary constraint, and selection at the CD163 gene in pigs. A functional CD163 protein is required for infection by porcine reproductive and respiratory syndrome virus, which is a serious pathogen with major impacts on pig production.ResultsWe used targeted pooled sequencing of the exons of CD163 to detect sequence variants in 35,000 pigs of diverse genetic backgrounds and to search for potential stop-gain and frameshift indel variants. Then, we used whole-genome sequence data from three pig lines to calculate: a variant intolerance score that measures the tolerance of genes to protein coding variation; an estimate of selection on protein-coding variation over evolutionary time; and haplotype diversity statistics to detect recent selective sweeps during breeding.ConclusionsUsing a deep survey of sequence variation in the CD163 gene in domestic pigs, we found no potential knockout variants. The CD163 gene was moderately intolerant to variation and showed evidence of positive selection in the pig lineage, but no evidence of recent selective sweeps during breeding.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy