SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1046 6673 srt2:(2010-2014)"

Sökning: L773:1046 6673 > (2010-2014)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boeger, Carsten A., et al. (författare)
  • CUBN Is a Gene Locus for Albuminuria
  • 2011
  • Ingår i: Journal of the American Society of Nephrology. - 1046-6673 .- 1533-3450. ; 22:3, s. 555-570
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of genetic risk factors for albuminuria may alter strategies for early prevention of CKD progression, particularly among patients with diabetes. Little is known about the influence of common genetic variants on albuminuria in both general and diabetic populations. We performed a meta-analysis of data from 63,153 individuals of European ancestry with genotype information from genome-wide association studies (CKDGen Consortium) and from a large candidate gene study (CARe Consortium) to identify susceptibility loci for the quantitative trait urinary albumin-to-creatinine ratio (UACR) and the clinical diagnosis microalbuminuria. We identified an association between a missense variant (I2984V) in the CUBN gene, which encodes cubilin, and both UACR (P = 1.1 x 10(-11)) and microalbuminuria (P = 0.001). We observed similar associations among 6981 African Americans in the CARe Consortium. The associations between this variant and both UACR and microalbuminuria were significant in individuals of European ancestry regardless of diabetes status. Finally, this variant associated with a 41% increased risk for the development of persistent microalbuminuria during 20 years of follow-up among 1304 participants with type 1 diabetes in the prospective DCCT/EDIC Study. In summary, we identified a missense CUBN variant that associates with levels of albuminuria in both the general population and in individuals with diabetes.
  •  
2.
  • Burlaka, Ievgeniia, et al. (författare)
  • Ouabain Protects against Shiga Toxin-Triggered Apoptosis by Reversing the Imbalance between Bax and Bcl-xL
  • 2013
  • Ingår i: Journal of the American Society of Nephrology. - 1046-6673 .- 1533-3450. ; 24:9, s. 1413-1423
  • Tidskriftsartikel (refereegranskat)abstract
    • Hemolytic uremic syndrome, a life-threatening disease often accompanied by acute renal failure, usually occurs after gastrointestinal infection with Shiga toxin 2 (Stx2)-producing Escherichia coli. Stx2 binds to the glycosphingolipid globotriaosylceramide receptor, expressed by renal epithelial cells, and triggers apoptosis by activating the apoptotic factor Bax. Signaling via the ouabain/Na,K-ATPase/IP3R/NF-B pathway increases expression of Bcl-xL, an inhibitor of Bax, suggesting that ouabain might protect renal cells from Stx2-triggered apoptosis. Here, exposing rat proximal tubular cells to Stx2 in vitro resulted in massive apoptosis, upregulation of the apoptotic factor Bax, increased cleaved caspase-3, and downregulation of the survival factor Bcl-xL; co-incubation with ouabain prevented all of these effects. Ouabain activated the NF-B antiapoptotic subunit p65, and the inhibition of p65 DNA binding abolished the antiapoptotic effect of ouabain in Stx2-exposed tubular cells. Furthermore, in vivo, administration of ouabain reversed the imbalance between Bax and Bcl-xL in Stx2-treated mice. Taken together, these results suggest that ouabain can protect the kidney from the apoptotic effects of Stx2.
  •  
3.
  • Carlsson, Axel C, et al. (författare)
  • Soluble TNF receptors and kidney dysfunction in the elderly
  • 2014
  • Ingår i: Journal of the American Society of Nephrology. - 1046-6673 .- 1533-3450. ; 25:6, s. 1313-1320
  • Tidskriftsartikel (refereegranskat)abstract
    • The importance of TNF-α and its soluble receptors (sTNFR1 and sTNFR2) in the development of kidney disease is being unraveled. Yet, community-based data regarding the role of sTNFRs are lacking. We assessed serum sTNFRs and aspects of kidney damage cross-sectionally in two independent community-based cohorts of elderly participants: Prospective Investigation of the Vasculature in Uppsala Seniors (n=815; mean age, 75 years; 51% women) and Uppsala Longitudinal Study of Adult Men (n=778; mean age, 78 years). Serum sTNFR1 correlated substantially with different aspects of kidney pathology in the Uppsala Longitudinal Study of Adult Men cohort (R=-0.52 for estimated GFR, R=0.22 for urinary albumin-to-creatinine ratio, and R=0.17 for urinary kidney injury molecule-1; P<0.001 for all), with similar correlations in the Prospective Investigation of the Vasculature in Uppsala Seniors cohort. These associations remained significant after adjustment for age, sex, inflammatory markers, and cardiovascular risk factors and were also evident in participants without diabetes. Serum sTNFR2 was associated with all three markers in the Prospective Investigation of the Vasculature in Uppsala Seniors cohort (P<0.001 for all). Our findings from two independent community-based cohorts confirm and extend results of previous studies supporting circulating sTNFRs as relevant biomarkers for kidney damage and dysfunction in elderly individuals, even in the absence of diabetes.
  •  
4.
  • Chaturvedi, Swasti, et al. (författare)
  • Slit2 Prevents Neutrophil Recruitment and Renal Ischemia-Reperfusion Injury : english
  • 2013
  • Ingår i: Journal of the American Society of Nephrology. - 1046-6673. ; 24:8, s. 1274-1287
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrophils recruited to the postischemic kidney contribute to the pathogenesis of ischemia-reperfusion injury (IRI), which is the most common cause of renal failure among hospitalized patients. The Slit family of secreted proteins inhibits chemotaxis of leukocytes by preventing activation of Rho-family GTPases, suggesting that members of this family might modulate the recruitment of neutrophils and the resulting IRI. Here, in static and microfluidic shear assays, Slit2 inhibited multiple steps required for the infiltration of neutrophils into tissue. Specifically, Slit2 blocked the capture and firm adhesion of human neutrophils to inflamed vascular endothelial barriers as well as their subsequent transmigration. To examine whether these observations were relevant to renal IRI, we administered Slit2 to mice before bilateral clamping of the renal pedicles. Assessed at 18 hours after reperfusion, Slit2 significantly inhibited renal tubular necrosis, neutrophil and macrophage infiltration, and rise in plasma creatinine. In vitro, Slit2 did not impair the protective functions of neutrophils, including phagocytosis and superoxide production, and did not inhibit neutrophils from killing the extracellular pathogen Staphylococcus aureus. In vivo, administration of Slit2 did not attenuate neutrophil recruitment or bacterial clearance in mice with ascending Escherichia coli urinary tract infections and did not increase the bacterial load in the livers of mice infected with the intracellular pathogen Listeria monocytogenes. Collectively, these results suggest that Slit2 may hold promise as a strategy to combat renal IRI without compromising the protective innate immune response.
  •  
5.
  •  
6.
  • Haynes, Richard, et al. (författare)
  • Effects of Lowering LDL Cholesterol on Progression of Kidney Disease
  • 2014
  • Ingår i: Journal of the American Society of Nephrology. - 1046-6673 .- 1533-3450. ; 25:8, s. 1825-1833
  • Tidskriftsartikel (refereegranskat)abstract
    • Lowering LDL cholesterol reduces the risk of developing atherosclerotic events in CKD, but the effects of such treatment on progression of kidney disease remain uncertain. Here, 6245 participants with CKD (not on dialysis) were randomly assigned to simvastatin (20 mg) plus ezetimibe (10 mg) daily or matching placebo. The main prespecified renal outcome was ESRD (defined as the initiation of maintenance dialysis or kidney transplantation). During 4.8 years of follow-up, allocation to simvastatin plus ezetimibe resulted in an average LDL cholesterol difference (SEM) of 0.96 (0.02) mmol/L compared with placebo. There was a nonsignificant 3% reduction in the incidence of ESRD (1057 [33.9%] cases with simvastatin plus ezetimibe versus 1084 [34.6%] cases with placebo; rate ratio, 0.97; 95% confidence interval [95% CI], 0.89 to 1.05; P=0.41). Similarly, allocation to simvastatin plus ezetimibe had no significant effect on the prespecified tertiary outcomes of ESRD or death (1477 [47.4%] events with treatment versus 1513 [48.3%] events with placebo; rate ratio, 0.97; 95% CI, 0.90 to 1.04; P=0.34) or ESRD or doubling of baseline creatinine (1189 [38.2%] events with treatment versus 1257 [40.2%] events with placebo; rate ratio, 0.93; 95% CI, 0.86 to 1.01; P=0.09). Exploratory analyses also showed no significant effect on the rate of change in eGFR. Lowering LDL cholesterol by 1 mmol/L did not slow kidney disease progression within 5 years in a wide range of patients with CKD.
  •  
7.
  • He, Bing, et al. (författare)
  • Lmx1b and FoxC Combinatorially Regulate Podocin Expression in Podocytes
  • 2014
  • Ingår i: Journal of the American Society of Nephrology. - 1046-6673 .- 1533-3450. ; 25:12, s. 2764-2777
  • Tidskriftsartikel (refereegranskat)abstract
    • Podocin is a key protein of the kidney podocyte slit diaphragm protein complex, an important part of the glomerular filtration barrier. Mutations in the human podocin gene NPHS2 cause familial or sporadic forms of renal disease owing to the disruption of filtration barrier integrity. The exclusive expression of NPHS2 in podocytes reflects its unique function and raises interesting questions about its transcriptional regulation. Here, we further define a 2.5-kb zebrafish nphs2 promoter fragment previously described and identify a 49-bp podocyte-specific transcriptional enhancer using Tol2-mediated G(0) transgenesis in zebrafish. Within this enhancer, we identified a cis-acting element composed of two adjacent DNA-binding sites (FLAT-E and forkhead) bound by transcription factors Lnnx1b and FoxC. In zebrafish, double knockdown of Lmx1b and FoxC orthologs using morpholino doses that caused no or minimal phenotypic changes upon individual knockdown completely disrupted podocyte development in 40% of injected embryos. Co-overexpression of the two genes potently induced endogenous nphs2 expression in zebrafish podocytes. We found that the NPHS2 promoter also contains a cis-acting Lmx1b-FoxC motif that binds LMX1B and FoxC2. Furthermore, a genome-wide search identified several genes that carry the Lmx1b-FoxC motif in their promoter regions. Among these candidates, motif-driven podocyte enhancer activity of CCNC and MEIS2 was functionally analyzed in vivo. Our results show that podocyte expression of some genes is combinatorially regulated by two transcription factors interacting synergistically with a common enhancer. This finding provides insights into transcriptional mechanisms required for normal and pathologic podocyte functions.
  •  
8.
  • Holdaas, Hallvard, et al. (författare)
  • Rosuvastatin in Diabetic Hemodialysis Patients
  • 2011
  • Ingår i: Journal of the American Society of Nephrology. - 1046-6673 .- 1533-3450. ; 22:7, s. 1335-1341
  • Tidskriftsartikel (refereegranskat)abstract
    • A randomized, placebo-controlled trial in diabetic patients receiving hemodialysis showed no effect of atorvastatin on a composite cardiovascular endpoint, but analysis of the component cardiac endpoints suggested that atorvastatin may significantly reduce risk. Because the AURORA (A Study to Evaluate the Use of Rosuvastatin in Subjects on Regular Hemodialysis: An Assessment of Survival and Cardiovascular Events) trial included patients with and without diabetes, we conducted a post hoc analysis to determine whether rosuvastatin might reduce the risk of cardiac events in diabetic patients receiving hemodialysis. Among the 7:31 participants with diabetes, traditional risk factors such as LDL-C, smoking, and BP did not associate with cardiac events (cardiac death and nonfatal myocardial infarction). At baseline, only age and high-sensitivity C-reactive protein were independent risk factors for cardiac events. Assignment to rosuvastatin associated with a nonsignificant 16.2% reduction in risk for the AURORA trial's composite primary endpoint of cardiac death, nonfatal MI, or fatal or nonfatal stroke (HR 0.84; 95% CI 0.65 to 1.07). There was no difference in overall stroke, but the rosuvastatin group had more hemorrhagic strokes than the placebo group (12 versus two strokes, respectively; HR, 5.21; 95% CI 1.17 to 23.27). Rosuvastatin treatment significantly reduced the rates of cardiac events by 32% among patients with diabetes (HR 0.68; 95% CI 0.51 to 0.90). In conclusion, among hemodialysis patients with diabetes mellitus, rosuvastatin might reduce the risk of fatal and nonfatal cardiac events.
  •  
9.
  • Lindskog, Annika, 1982, et al. (författare)
  • Melanocortin 1 receptor agonists reduce proteinuria.
  • 2010
  • Ingår i: Journal of the American Society of Nephrology : JASN. - 1533-3450 .- 1046-6673. ; 21:8, s. 1290-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Membranous nephropathy is one of the most common causes of nephrotic syndrome in adults. Recent reports suggest that treatment with adrenocorticotropic hormone (ACTH) reduces proteinuria, but the mechanism of action is unknown. Here, we identified gene expression of the melanocortin receptor MC1R in podocytes, glomerular endothelial cells, mesangial cells, and tubular epithelial cells. Podocytes expressed most MC1R protein, which colocalized with synaptopodin but not with an endothelial-specific lectin. We treated rats with passive Heymann nephritis (PHN) with MS05, a specific MC1R agonist, which significantly reduced proteinuria compared with untreated PHN rats (P < 0.01). Furthermore, treatment with MC1R agonists improved podocyte morphology and reduced oxidative stress. In summary, podocytes express MC1R, and MC1R agonism reduces proteinuria, improves glomerular morphology, and reduces oxidative stress in nephrotic rats with PHN. These data may explain the proteinuria-reducing effects of ACTH observed in patients with membranous nephropathy, and MC1R agonists may provide a new therapeutic option for these patients.
  •  
10.
  • Maezawa, Yoshiro, et al. (författare)
  • Loss of the Podocyte-Expressed Transcription Factor Tcf21/Pod1 Results in Podocyte Differentiation Defects and FSGS
  • 2014
  • Ingår i: Journal of the American Society of Nephrology. - 1046-6673 .- 1533-3450. ; 25:11, s. 2459-2470
  • Tidskriftsartikel (refereegranskat)abstract
    • Podocytes are terminally differentiated cells with an elaborate cytoskeleton and are critical components of the glomerular barrier. We identified a bHLH transcription factor, Tcf21, that is highly expressed in developing and mature podocytes. Because conventional Tcf21 knockout mice die in the perinatal period with major cardiopulmonary defects, we generated a conditional Tcf21 knockout mouse to explore the role of this transcription factor in podocytes in vivo. Tcf21 was deleted from podocytes and podocyte progenitors using podocin-cre (podTcf21) and wnt4-cre (wnt4creTcf21) driver strains, respectively. Loss of Tcf21 from capillary-loop stage podocytes (podTcf21) results in simplified glomeruli with a decreased number of endothelial and mesangial cells. By 5 weeks of age, 40% of podTcf21 mice develop massive proteinuria and lesions similar to FSGS. Notably, the remaining 60% of mice do not develop proteinuria even when aged to 8 months. By contrast, earlier deletion of Tcf21 from podocyte precursors (wnt4creTcf21) results in a profound developmental arrest of podocyte differentiation and renal failure in 100% of mice during the perinatal period. Taken together, our results demonstrate a critical role for Tcf21 in the differentiation and maintenance of podocytes. Identification of direct targets of this transcription factor may provide new therapeutic avenues for proteinuric renal disease, including FSGS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy