SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1097 4164 srt2:(2000-2004)"

Sökning: L773:1097 4164 > (2000-2004)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dellino, Gaetano I, et al. (författare)
  • Polycomb silencing blocks transcription initiation.
  • 2004
  • Ingår i: Molecular Cell. - 1097-2765 .- 1097-4164. ; 13:6, s. 887-93
  • Tidskriftsartikel (refereegranskat)abstract
    • Polycomb (PcG) complexes maintain the silent state of target genes. The mechanism of silencing is not known but has been inferred to involve chromatin packaging to block the access of transcription factors. We have studied the effect of PcG silencing on the hsp26 heat shock promoter. While silencing does decrease the accessibility of some restriction enzyme sites to some extent, it does not prevent the binding of TBP, RNA polymerase, or the heat shock factor to the hsp26 promoter, as shown by chromatin immunoprecipitation. However, we find that in the repressed state, the RNA polymerase cannot initiate transcription. We conclude that, rather than altering chromatin structure to block accessibility, PcG silencing in this construct targets directly the activity of the transcriptional machinery at the promoter.
  •  
2.
  •  
3.
  • Grönroos, Eva, et al. (författare)
  • Control of Smad7 stability by competition between acetylation and ubiquitination
  • 2002
  • Ingår i: Molecular Cell. - 1097-2765 .- 1097-4164. ; 10:3, s. 483-493
  • Tidskriftsartikel (refereegranskat)abstract
    • Smad proteins regulate gene expression in response to TGFbeta signaling. Here we present evidence that Smad7 interacts with the transcriptional coactivator p300, resulting in acetylation of Smad7 on two lysine residues in its N terminus. Acetylation or mutation of these lysine residues stabilizes Smad7 and protects it from TGFbeta-induced degradation. Furthermore, we demonstrate that the acetylated residues in Smad7 also are targeted by ubiquitination and that acetylation of these lysine residues prevents subsequent ubiquitination. Specifically, acetylation of Smad7 protects it against ubiquitination and degradation mediated by the ubiquitin ligase Smurf1. Thus, our data suggest that competition between ubiquitination and acetylation of overlapping lysine residues constitutes a novel mechanism to regulate protein stability.
  •  
4.
  • Nissan, Tracy A, et al. (författare)
  • A pre-ribosome with a tadpole-like structure functions in ATP-dependent maturation of 60S subunits
  • 2004
  • Ingår i: Molecular Cell. - : Elsevier BV. - 1097-2765 .- 1097-4164. ; 15:2, s. 295-301
  • Tidskriftsartikel (refereegranskat)abstract
    • Analyses of isolated pre-ribosomes yielded biochemical "snapshots" of the dynamic, nascent 60S and 40S subunits during their path from the nucleolus to the cytoplasm. Here, we present the structure of a pre-60S ribosomal intermediate located in the nucleoplasm. A huge dynein-related AAA-type ATPase (Rea1) and the Rix1 complex (Rix1-Ipi1-Ipi3) are components of an extended (approximately 45 nm long) pre-60S particle. Antibody crosslinking in combination with electron microscopy revealed that the Rea1 localizes to the "tail" region and ribosomal proteins to the "head" region of the elongated "tadpole-like" structure. Furthermore, in vitro treatment with ATP induces dissociation of Rea1 from the pre-60S subunits. Rea1 and the Rix1 complex could mediate ATP-dependent remodeling of 60S subunits and subsequent export from the nucleoplasm to the cytoplasm.
  •  
5.
  • Novak, R, et al. (författare)
  • Signal transduction by a death signal peptide : uncovering the mechanism of bacterial killing by penicillin.
  • 2000
  • Ingår i: Molecular Cell. - 1097-2765 .- 1097-4164. ; 5:1, s. 49-57
  • Tidskriftsartikel (refereegranskat)abstract
    • The binding of bactericidal antibiotics like penicillins, cephalosporins, and glycopeptides to their bacterial targets stops bacterial growth but does not directly cause cell death. A second process arising from the bacteria itself is necessary to trigger endogenous suicidal enzymes that dissolve the cell wall during autolysis. The signal and the trigger pathway for this event are completely unknown. Using S. pneumoniae as a model, we demonstrate that signal transduction via the two-component system VncR/S triggers multiple death pathways. We show that the signal sensed by VncR/S is a secreted peptide, Pep27, that initiates the cell death program. These data depict a novel model for the control of bacterial cell death.
  •  
6.
  • Goumans, MJ, et al. (författare)
  • Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFP/ALK5 signaling
  • 2003
  • Ingår i: Molecular Cell. - 1097-4164. ; 12:4, s. 817-828
  • Tidskriftsartikel (refereegranskat)abstract
    • Transforming growth factor-beta (TGFbeta) regulates the activation state of the endothelium via two opposing type I receptor/Smad pathways. Activin receptor-like kinase-1 (ALK1) induces Smad1/5 phosphorylation, leading to an increase in endothelial cell proliferation and migration, while ALK5 promotes Smad2/3 activation and inhibits both processes. Here, we report that ALK5 is important for TGFbeta/ALK1 signaling; endothelial cells lacking ALK5 are deficient in TGFbeta/ALK1-induced responses. More specifically, we show that ALK5 mediates a TGFbeta-dependent recruitment of ALK1 into a TGFbeta receptor complex and that the ALK5 kinase activity is required for optimal ALK1 activation. TGFbeta type II receptor is also required for ALK1 activation by TGFbeta. Interestingly, ALK1 not only induces a biological response opposite to that of ALK5 but also directly antagonizes ALK5/Smad signaling.
  •  
7.
  • Witte, V, et al. (författare)
  • HIV-1 Nef mimics an integrin receptor signal that recruits the polycomb group protein Eed to the plasma membrane
  • 2004
  • Ingår i: Molecular Cell. - 1097-4164. ; 13:2, s. 179-190
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nef protein of human and simian immunodeficiency virus (HIV/SIV) is believed to interfere with T cell activation signals by forming a signaling complex at the plasma membrane. Composition and function of the complex are not fully understood. Here we report that Nef recruits the Polycomb Group (PcG) protein Eed, so far known as a nuclear factor and repressor of transcription, to the membrane of cells. The Nef-induced translocation of Eed led to a potent stimulation of Tat-dependent HIV transcription, implying that Eed removal from the nucleus is required for optimal Tat function. Similar to Nef action, activation of integrin receptors recruited Eed to the plasma membrane, also leading to enhanced Tat/Nef-mediated transcription. Our results suggest a link between membrane-associated activation processes and transcriptional derepression and demonstrate how HIV exploits this mechanism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy