SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1431 2174 OR L773:1435 0157 srt2:(2020-2023)"

Sökning: L773:1431 2174 OR L773:1435 0157 > (2020-2023)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barthel, Roland, 1967, et al. (författare)
  • Similarity-based approaches in hydrogeology: proposal of a new concept for data-scarce groundwater resource characterization and prediction
  • 2021
  • Ingår i: Hydrogeology Journal. - : Springer Science and Business Media LLC. - 1435-0157 .- 1431-2174. ; 29:5, s. 1693-1709
  • Tidskriftsartikel (refereegranskat)abstract
    • A new concept is proposed for describing, analysing and predicting the dynamic behaviour of groundwater resources based on classification and similarity. The concept makes use of the ideas put forward by the “PUB” (predictions in ungauged basins) initiative in surface-water hydrology. One of the approaches developed in PUB uses the principle that similar catchments, exposed to similar weather conditions, will generate a similar discharge response at the catchment outlet. This way, models developed for well-observed catchments can be used to make predictions for ungauged catchments with similar properties (topography, land use, etc.). The concept proposed here applies the same idea to groundwater systems, with the goal to make predictions of the dynamic behaviour of groundwater in poorly observed systems using similarities to well-observed and understood systems. This paper gives an overview of the main ideas, the methodological background, the progress so far, and the challenges that the authors regard as most crucial for further development. One of the main goals of this article is thus to raise interest for this new concept within the groundwater community. There are a multitude of highly interesting aspects to investigate, and a community effort, as with PUB, is required. A second goal is to foster and exchange ideas between the groundwater and surface water research communities who, while often working on similar problems, have often missed the opportunity to learn from each other.
  •  
2.
  • Barthel, Roland, 1967, et al. (författare)
  • Systematic visual analysis of groundwater hydrographs: potential benefits and challenges
  • 2022
  • Ingår i: Hydrogeology Journal. - : Springer Science and Business Media LLC. - 1431-2174 .- 1435-0157. ; 30, s. 359-78
  • Tidskriftsartikel (refereegranskat)abstract
    • Visual analysis of time series in hydrology is frequently seen as a crucial step to becoming acquainted with the nature of the data, as well as detecting unexpected errors, biases, etc. Human eyes, in particular those of a trained expert, are well suited to recognize irregularities and distinct patterns. However, there are limits as to what the eye can resolve and process; moreover, visual analysis is by definition subjective and has low reproducibility. Visual inspection is frequently mentioned in publications, but rarely described in detail, even though it may have significantly affected decisions made in the process of performing the underlying study. This paper presents a visual analysis of groundwater hydrographs that has been performed in relation to attempts to classify groundwater time series as part of developing a new concept for prediction in data-scarce groundwater systems. Within this concept, determining the similarity of groundwater hydrographs is essential. As standard approaches for similarity analysis of groundwater hydrographs do not yet exist, different approaches were developed and tested. This provided the opportunity to carry out a comparison between visual analysis and formal, automated classification approaches. The presented visual classification was carried out on two sets of time series from central Europe and Fennoscandia. It is explained why and where visual classification can be beneficial but also where the limitations and challenges associated with the approach lie. It is concluded that systematic visual analysis of time series in hydrology, despite its subjectivity and low reproducibility, should receive much more attention.
  •  
3.
  • Earon, Robert, et al. (författare)
  • Insight into the influence of local streambed heterogeneity on hyporheic-zone flow characteristics
  • 2020
  • Ingår i: Hydrogeology Journal. - : Springer Science and Business Media Deutschland GmbH. - 1431-2174 .- 1435-0157. ; 28:8, s. 2697-2712
  • Tidskriftsartikel (refereegranskat)abstract
    • Interaction between surface water and groundwater plays a fundamental role in influencing aquatic chemistry, where hyporheic exchange processes, distribution of flow paths and residence times within the hyporheic zone will influence the transport of mass and energy in the surface-water/groundwater system. Geomorphological conditions greatly influence hyporheic exchange, and heterogeneities such as rocks and clay lenses will be a key factor for delineating the hyporheic zone. Electrical resistivity tomography (ERT) and ground-penetrating radar (GPR) were used to investigate the streambed along a 6.3-m-long reach in order to characterise geological layering and distinct features which may influence parameters such as hydraulic conductivity. Time-lapse ERT measurements taken during a tracer injection demonstrated that geological features at the meter-scale played a determining role for the hyporheic flow field. The penetration depth of the tracer into the streambed sediment displayed a variable spatial pattern in areas where the presence of highly resistive anomalies was detected. In areas with more homogeneous sediments, the penetration depth was much more uniformly distributed than observed in more heterogeneous sections, demonstrating that ERT can play a vital role in identifying critical hydraulic features that may influence hyporheic exchange processes. Reciprocal ERT measurements linked variability and thus uncertainty in the modelled resistivity to the spatial locations, which also demonstrated larger variability in the tracer penetration depth, likely due to local heterogeneity in the hydraulic conductivity field.
  •  
4.
  • Giese, Markus, 1985, et al. (författare)
  • Review: Saltwater intrusion in fractured crystalline bedrock
  • 2021
  • Ingår i: Hydrogeology Journal. - : Springer Science and Business Media LLC. - 1431-2174 .- 1435-0157. ; 29, s. 2313-2328
  • Forskningsöversikt (refereegranskat)abstract
    • During the past few years, the number of regional and national assessments of groundwater quality in regard to saltwater intrusion in coastal aquifers has increased steadily. However, most of the international literature on saltwater intrusion is focused on coastal plains with aquifers in unconsolidated material. Case studies, modelling approaches and parameter studies dealing with saltwater intrusion in those systems are abundant. While the hydrogeology of fractured rock has been intensively studied with both modelling approaches and parameter studies—mainly in relation to deep-laying fractured crystalline bedrock as potential waste repositories—case studies on saltwater intrusion in shallow fractured rocks are still an exception. This review summarizes the actual knowledge on saltwater intrusion in fractured crystalline rock. In combination with short overviews of the processes of saltwater intrusion, flow in fractured systems and the genesis of these systems, the review highlights the importance of the fracture systems and its specific characteristics. Fracture properties are a direct consequence of the geological history as well as the current situation of the coastal area. A holistic assessment of water quality in coastal areas hosting fractured crystalline bedrock therefore requires the combination of different approaches in order to investigate the impact of saltwater intrusion through the fractured system.
  •  
5.
  • Morén, Ida, et al. (författare)
  • Geographic and hydromorphologic controls on interactions between hyporheic flow and discharging deep groundwater
  • 2023
  • Ingår i: Hydrogeology Journal. - : Springer Nature. - 1431-2174 .- 1435-0157. ; 31:3, s. 537-555
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyporheic exchange flow (HEF) at the streambed–water interface (SWI) has been shown to impact the pattern and rate of discharging groundwater flow (GWF) and the consequential transport of heat, solutes and contaminants from the subsurface into streams. However, the control of geographic and hydromorphological catchment characteristics on GWF–HEF interactions is still not fully understood. Here, the spatial variability in flow characteristics in discharge zones was investigated and averaged over three spatial scales in five geographically different catchments in Sweden. Specifically, the deep GWF discharge velocity at the SWI was estimated using steady-state numerical models, accounting for the real multiscale topography and heterogeneous geology, while an analytical model, based on power spectral analysis of the streambed topography and statistical assessments of the stream hydraulics, was used to estimate the HEF. The modeling resulted in large variability in deep GWF and HEF velocities, both within and between catchments, and a regression analysis was performed to explain this observed variability by using a set of independent variables representing catchment topography and geology as well as local stream hydromorphology. Moreover, the HEF velocity was approximately two orders of magnitude larger than the deep GWF velocity in most of the investigated stream reaches, indicating significant potential to accelerate the deep GWF velocity and reduce the discharge areas. The greatest impact occurred in catchments with low average slope and in reaches close to the catchment outlet, where the deep GWF discharge velocity was generally low.
  •  
6.
  • Noori, Roohollah, et al. (författare)
  • PODMT3DMS-Tool : proper orthogonal decomposition linked to the MT3DMS model for nitrate simulation in aquifers
  • 2020
  • Ingår i: Hydrogeology Journal. - : Springer Science and Business Media LLC. - 1431-2174 .- 1435-0157.
  • Tidskriftsartikel (refereegranskat)abstract
    • The PODMT3DMS-Tool, which consists of a proper orthogonal decomposition (POD) linked to the Modular Transport 3-Dimensional Multi Species (MT3DMS) code for nitrate simulation in groundwater, is introduced. POD, as a statistical technique, reduces a large amount of information produced by the MT3DMS model to provide the main components of the PODMT3DMS-Tool, i.e., space- and time-dependent terms of nitrate. The low-dimensional components represent time- and space-dependent factors in the aquifer response such as hydraulic, hydrogeological and water quality variables represented in the simulation using the MT3DMS model. The PODMT3DMS-Tool is thus a combined statistical and conceptual model with a simple structure and comparable accuracy to MT3DMS. Practical application of the PODMT3DMS-Tool to the Karaj Aquifer in Iran during 6 years revealed agreement between nitrate concentrations simulated by the PODMT3DMS-Tool and MT3DMS, with a mean absolute error of less than 0.5 mg/L in most parts of the aquifer. Moreover, the PODMT3DMS-Tool needed only about 10% of the calculation time required by MT3DMS. The PODMT3DMS-Tool can be used in predict nitrate concentration in the Karaj Aquifer, while its simplicity also makes it highly interesting for other water resources problems.
  •  
7.
  • Nygren, Michelle, et al. (författare)
  • Exploring groundwater drought responsiveness in lowland post‑glacial environments
  • 2022
  • Ingår i: Hydrogeology Journal. - : Springer Science and Business Media LLC. - 1431-2174 .- 1435-0157. ; 30, s. 1937-1961
  • Tidskriftsartikel (refereegranskat)abstract
    • Groundwater drought response to meteorological forcing depends on initial hydrological conditions. This makes it difficult to characterise groundwater droughts and identify the drought vulnerability of aquifers. The objective is to increase the understanding of groundwater memory and response to meteorological forcing in lowland post-glacial environments. Eighty-one groundwater hydrographs are analysed, using the standardised groundwater level index (SGI) and the precipitation index. Memory and response times are assessed using auto- and cross-correlation functions. Response time is estimated by comparing two approaches: (1) the traditional use of the maximum cross-correlation, and (2) the alternative use of the cross-correlation slope. Results are interpreted for different hydrogeological settings. The analysis showed that sand aquifers have the longest memory and response times, particularly in confined settings where the memory could be over 4 years. Silts and tills have relatively short memories and response times, at less than 1 year, though median values for silt are higher than for unconfined sand aquifers. In this study, estimating response time using the correlation slope is superior at capturing the initial response time of groundwater to precipitation. However, the results showed that groundwater anomalies in lowland post-glacial environments are sometimes more influenced by climate teleconnections than concurrent forcing. This emphasises the need for a holistic approach for the characterisation and projection of groundwater drought, as it develops in simultaneous response to meteorological forcing at different timescales.
  •  
8.
  • Sharma, Mrityunjai, et al. (författare)
  • Apparent flow-dimension approach to the study of heterogeneous fracture network systems
  • 2023
  • Ingår i: Hydrogeology Journal. - : Springer Science and Business Media LLC. - 1431-2174 .- 1435-0157. ; 31:4, s. 873-891
  • Tidskriftsartikel (refereegranskat)abstract
    • The generalized radial flow (GRF) model in well-test analysis employs noninteger flow dimensions to represent the variation in flow area with respect to radial distance from a borehole. However, the flow dimension is influenced not only by changes in flow area, but also by permeability variations in the flow medium. In this report, the flow dimension from the combined effect of flow dimensionality and permeability/conductance variation is interpreted and referred to as apparent flow dimension (AFD). AFD is determined using the second derivative of the drawdown-time plot from pressure transient testing, which may have varied noninteger values with time. A systematic set of investigations is presented, starting from idealized channel networks in one, two and three dimensions (1D, 2D and 3D, respectively), and proceeding to a case study with a complex fracture network based on actual field data. Interestingly, a general relation between the AFD upsurge/dip and the conductance contrast between adjacent flow channels is established. The relation is derived from calculations for 1D networks but is shown to be useful even for data interpretation for more complex 2D and 3D cases. In an application to fracture network data at a real site, the presence of flow channel clusters is identified using the AFD plot. Overall, the AFD analysis is shown to be a useful tool in detecting the conductance/dimensionality changes in the flow system, and may serve as one of the different data types that can be jointly analysed for characterizing a heterogeneous flow system.
  •  
9.
  • Smith, Ryan G., et al. (författare)
  • Apportioning deformation among depth intervals in an aquifer system using InSAR and head data
  • 2021
  • Ingår i: Hydrogeology Journal. - : Springer Science and Business Media LLC. - 1431-2174 .- 1435-0157. ; 29:7, s. 2475-2486
  • Tidskriftsartikel (refereegranskat)abstract
    • Land surface subsidence due to excessive groundwater pumping is an increasing concern in California, USA. Interferometric Synthetic Aperture Radar (InSAR) is a remote sensing technique for measuring centimeter-to-millimeter surface deformation at 10–100 m spatial resolution. Here, a data-driven approach that attributes deformation to individual depth intervals within an aquifer system by integrating head data acquired from each of three screened intervals in a monitoring well with InSAR surface deformation measurements was developed. The study area was the Colusa Basin in northern Central Valley. To reconstruct the surface deformation history over the study area, 13 ALOS-PALSAR scenes acquired between 2006 and 2010 were processed. Up to ~3-cm year−1 long-term subsidence and up to ~6 cm seasonal subsidence were observed using the InSAR technique. The technique developed in this paper integrates the InSAR-observed seasonal deformation rate and the co-located head measurements in multiple depth intervals to estimate the elastic skeletal storage coefficient, the time delay between the head change and the observed deformation, and subsequently the deformation of each depth interval. This technique can be implemented when hydraulic head measurements within each depth interval are not correlated with each other. Using this approach, the depth interval that contributed the most to the total subsidence, as well as storage parameters for all intervals, are estimated. The technique can be used for identification of the depth interval within the aquifer system responsible for deformation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy