SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1439 6319 OR L773:1439 6327 srt2:(1995-1999)"

Search: L773:1439 6319 OR L773:1439 6327 > (1995-1999)

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andersson, Eva A, et al. (author)
  • Abdominal and hip flexor muscle activation during various training exercises.
  • 1997
  • In: European Journal of Applied Physiology and Occupational Physiology. - : Springer Science and Business Media LLC. - 0301-5548 .- 1432-1025 .- 1439-6319 .- 1439-6327. ; 75:2, s. 115-23
  • Journal article (peer-reviewed)abstract
    • The purpose of this study was to provide objective information on the involvement of different abdominal and hip flexor muscles during various types of common training exercises used in rehabilitation and sport. Six healthy male subjects performed altogether 38 different static and dynamic training exercises trunk and hip flexion sit-ups, with various combinations of leg position and support, and bi- and unilateral leg lifts. Myoelectric activity was recorded with surface electrodes from the rectus abdominis, obliquus externus, obliquus internus, rectus femoris, and sartorius muscles and with indwelling fine-wire electrodes from the iliacus muscle. The mean electromyogram amplitude, normalised to the highest observed value, was compared between static and dynamic exercises separately. The hip flexors were highly activated only in exercises involving hip flexion, either lifting the whole upper body or the legs. In contrast, the abdominal muscles showed marked activation both during trunk and hip flexion sit-ups. In hip flexion sit-ups, flexed and supported legs increased hip flexor activation, whereas such modifications did not generally alter the activation level of the abdominals. Bilateral, but not unilateral, leg lifts required activation of abdominal muscles. In trunk flexion sit-ups an increased activation of the abdominal muscles was observed with increased flexion angle, whereas the opposite was true for hip flexion sit-ups. Bilateral leg lifts resulted in higher activity levels than hip flexion sit-ups for the iliacus and sartorius muscles, while the opposite was true for rectus femoris muscles. These data could serve as a basis for improving the design and specificity of test and training exercises.
  •  
2.
  • Andersson, Johan, et al. (author)
  • Effects of lung volume and involuntary breathing movements on the human diving response
  • 1998
  • In: European Journal of Applied Physiology and Occupational Physiology. - : Springer Science and Business Media LLC. - 0301-5548 .- 1439-6319 .- 1439-6327. ; 77:1-2, s. 19-24
  • Journal article (peer-reviewed)abstract
    • The effects of lung volume and involuntary breathing movements on the human diving response were studied in 17 breath-hold divers. Each subject performed maximal effort apnoeas and simulated dives by apnoea and cold water face immersion, at lung volumes of 60%, 85%, and 100% of prone vital capacity (VC). Time of apnoea, blood pressure, heart rate, skin capillary blood flow, and fractions of end-expiratory CO2 and O2 were measured. The length of the simulated dives was the shortest at 60% of VC, probably because at this level the build up of alveolar CO2 was fastest. Apnoeas with face immersion at 100% of VC gave a marked drop in arterial pressure during the initial 20 s, probably due to high intrathoracic pressure mechanically reducing venous return. The diving response was most pronounced at 60% of VC. We concluded that at the two larger lung volumes both mechanical factors and input from pulmonary stretch receptors influenced the bradycardia and vasoconstriction, resulting in a nonlinear relationship between the breath-hold lung volume and magnitude of the diving response in the near-VC range. Furthermore, the involuntary breathing movements that appeared during the struggle phase of the apnoeas were too small to affect the diving response.
  •  
3.
  •  
4.
  • Hägg, Göran M., et al. (author)
  • Isotonic and isoelectric endurance tests for the upper trapezius muscle
  • 1997
  • In: European Journal of Applied Physiology and Occupational Physiology. - : Springer Science and Business Media LLC. - 0301-5548 .- 1432-1025 .- 1439-6319 .- 1439-6327. ; 75:3, s. 263-267
  • Journal article (peer-reviewed)abstract
    • As an alternative to a conventional endurance electromyogram (EMG) test for assessment of muscle capacity in the upper trapezius muscle (isotonic test, IT), an isoelectric test (IE) has been investigated. Nine subjects performed the two endurance tests. The tests were performed with a straight horizontal arm in the plane of the scapula. In IE, EMG amplitude was fed back to the subject and the subject was instructed to maintain a constant EMG activity equal to the level with the arm unsupported. Subjective ratings of local fatigue were obtained during the experiments. The EMG recordings from both tests were analysed for the root mean square value as well as according to the mean power frequency (MPF) technique. All the subjects endured maximal 15 min IE while in IT the median endurance was 11.9 min. Average subjective ratings of perceived fatigue increased more in IT compared to IE. The average normalised MPF curve from IT increased while that from IE was unaffected. There was a significant difference between the MPF results at 6 and 8 min. It is noteworthy that the MPF was higher in IT in spite of a higher accumulated biomechanical load. It was concluded from these studies that the interpretation of decreased MPF as an indicator of increased local muscle fatigue is doubtful at low contraction levels. It is suggested that an IE is a more appropriate method for the functional evaluation of low threshold motor units of the upper trapezius muscle in research into occupational disorders.
  •  
5.
  •  
6.
  • Ratkevicius, A, et al. (author)
  • Effects of contraction duration on low-frequency fatigue in voluntary and electrically induced exercise of quadriceps muscle in humans
  • 1998
  • In: European Journal of Applied Physiology and Occupational Physiology. - : Springer Science and Business Media LLC. - 0301-5548 .- 1439-6319 .- 1439-6327 .- 1432-1025. ; 77:5, s. 462-468
  • Journal article (peer-reviewed)abstract
    • The aims of this study were to investigate if low-frequency fatigue (LFF) dependent on the duration of repeated muscle contractions and to compare LFF in voluntary and electrically induced exercise. Male subjects performed three 9-min periods of repeated isometric knee extensions at 40% maximal voluntary contraction with contraction plus relaxation periods of 30 plus 60 s, 15 plus 30 s and 5 plus 10 s in protocols 1, 2 and 3, respectively. The same exercise protocols were repeated using feedback-controlled electrical stimulation at 40% maximal tetanic torque. Before and 15 min after each exercise period, knee extension torque at 1, 7, 10, 15, 20, 50 and 100 Hz was assessed. During voluntary exercise, electromyogram root mean square (EMGrms) of the vastus lateralis muscle was evaluated. The 20-Hz torque:100-Hz torque (20:100 Hz torque) ratio was reduced more after electrically induced than after voluntary exercise (P < 0.05). During electrically induced exercise, the decrease in 20:100 Hz torque ratio was gradually (P < 0.05) reduced as the individual contractions shortened. During voluntary exercise, the decrease in 20:100 Hz torque ratio and the increase in EMGrms were greater in protocol 1 (P < 0.01) than in protocols 2 and 3, which did not differ from each other. In conclusion, our results showed that LFF is dependent on the duration of individual muscle contractions during repetitive isometric exercise and that the electrically induced exercise produced a more pronounced LFF compared to voluntary exercise of submaximal intensity. It is suggested that compensatory recruitment of faster-contracting motor units is an additional factor affecting the severity of LFF during voluntary exercise.
  •  
7.
  • Sahlin, Kent, et al. (author)
  • Plasma hypoxanthine and ammonia in humans during prolonged exercise.
  • 1999
  • In: European Journal of Applied Physiology. - 1439-6319 .- 1439-6327. ; 80, s. 417-422
  • Journal article (peer-reviewed)abstract
    • In this study we examined the time course of changes in the plasma concentration of oxypurines [hypoxanthine (Hx), xanthine and urate] during prolonged cycling to fatigue. Ten subjects with an estimated maximum oxygen uptake ( V?O 2max) of 54 (range 47–67) ml?·?kg -1?·?min -1 cycled at [mean?(SEM)] 74?(2)% of V?O 2max until fatigue [79?(8) min]. Plasma levels of oxypurines increased during exercise, but the magnitude and the time course varied considerably between subjects. The plasma concentration of Hx ([Hx]) was 1.3?(0.3)?µmol/l at rest and increased eight fold at fatigue. After 60?min of exercise plasma [Hx] was >10?µmol/l in four subjects, whereas in the remaining five subjects it was <5?µmol/l. The muscle contents of total adenine nucleotides (TAN?=?ATP+ADP+AMP) and inosine monophosphate (IMP) were measured before and after exercise in five subjects. Subjects with a high plasma [Hx] at fatigue also demonstrated a pronounced decrease in muscle TAN and increase in IMP. Plasma [Hx] after 60?min of exercise correlated significantly with plasma concentration of ammonia ([NH 3], r?=?0.90) and blood lactate ( r?=?0.66). Endurance, measured as time to fatigue, was inversely correlated to plasma [Hx] at 60?min ( r?=?-0.68, P?3] or blood lactate. It is concluded that during moderate-intensity exercise, plasma [Hx] increases, but to a variable extent between subjects. The present data suggest that plasma [Hx] is a marker of adenine nucleotide degradation and energetic stress during exercise. The potential use of plasma [Hx] to assess training status and to identify overtraining deserves further attention.
  •  
8.
  • Seger, Jan, et al. (author)
  • Specific effects of eccentric and concentric training on muscle strength and morphology in humans.
  • 1998
  • In: European Journal of Applied Physiology. - 1439-6319 .- 1439-6327. ; 79, s. 49-57
  • Journal article (peer-reviewed)abstract
    • The purpose of this study was to compare pure eccentric and concentric isokinetic training with respect to their possible specificity in the adaptation of strength and morphology of the knee extensor muscles. Ten moderately trained male physical education students were divided into groups undertaking eccentric (ETG) and concentric (CTG) training. They performed 10 weeks of maximal isokinetic (90 degrees x s(-1)) training of the left leg, 4x10 repetitions - three times a week, followed by a second 10-week period of similar training of the right-leg. Mean eccentric and concentric peak torques increased by 18% and 2% for ETG and by 10% and 14% for CTG, respectively. The highest increase in peak torque occurred in the eccentric 90 degrees x s(-1) test for ETG (35%) whereas in CTG strength gains ranged 8%-15% at velocities equal or lower than the training velocity. Significant increases in strength were observed in the untrained contra-lateral leg only at the velocity and mode used in ipsilateral training. Cross-sectional area of the quadriceps muscle increased 3%-4% with training in both groups, reaching statistical significance only in ETG. No major changes in muscle fibre composition or areas were detected in biopsies from the vastus lateralis muscle for either leg or training group. In conclusion, effects of eccentric training on muscle strength appeared to be more mode and speed specific than corresponding concentric training. Only minor adaptations in gross muscle morphology indicated that other factors, such as changes in neural activation patterns, were causing the specific training-induced gains in muscle strength.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view