SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1464 7931 OR L773:1469 185X srt2:(2020-2023)"

Sökning: L773:1464 7931 OR L773:1469 185X > (2020-2023)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Angeler, David (författare)
  • Lakes in the era of global change: moving beyond single‐lake thinking in maintaining biodiversity and ecosystem services
  • 2021
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 96, s. 89-106
  • Forskningsöversikt (refereegranskat)abstract
    • The Anthropocene presents formidable threats to freshwater ecosystems. Lakes are especially vulnerable and important at the same time. They cover only a small area worldwide but harbour high levels of biodiversity and contribute disproportionately to ecosystem services. Lakes differ with respect to their general type (e.g. land‐locked, drainage, floodplain and large lakes) and position in the landscape (e.g. highland versus lowland lakes), which contribute to the dynamics of these systems. Lakes should be generally viewed as ‘meta‐systems’, whereby biodiversity is strongly affected by species dispersal, and ecosystem dynamics are contributed by the flow of matter and substances among locations in a broader waterscape context. Lake connectivity in the waterscape and position in the landscape determine the degree to which a lake is prone to invasion by non‐native species and accumulation of harmful substances. Highly connected lakes low in the landscape accumulate nutrients and pollutants originating from ecosystems higher in the landscape. The monitoring and restoration of lake biodiversity and ecosystem services should consider the fact that a high degree of dynamism is present at local, regional and global scales. However, local and regional monitoring may be plagued by the unpredictability of ecological phenomena, hindering adaptive management of lakes. Although monitoring data are increasingly becoming available to study responses of lakes to global change, we still lack suitable integration of models for entire waterscapes. Research across disciplinary boundaries is needed to address the challenges that lakes face in the Anthropocene because they may play an increasingly important role in harbouring unique aquatic biota as well as providing ecosystem goods and services in the future.
  •  
2.
  • Bergero, Roberta, et al. (författare)
  • Meiosis and beyond - understanding the mechanistic and evolutionary processes shaping the germline genome
  • 2021
  • Ingår i: Biological Reviews. - : John Wiley & Sons. - 1464-7931 .- 1469-185X. ; 96:3, s. 822-841
  • Forskningsöversikt (refereegranskat)abstract
    • The separation of germ cell populations from the soma is part of the evolutionary transition to multicellularity. Only genetic information present in the germ cells will be inherited by future generations, and any molecular processes affecting the germline genome are therefore likely to be passed on. Despite its prevalence across taxonomic kingdoms, we are only starting to understand details of the underlying micro-evolutionary processes occurring at the germline genome level. These include segregation, recombination, mutation and selection and can occur at any stage during germline differentiation and mitotic germline proliferation to meiosis and post-meiotic gamete maturation. Selection acting on germ cells at any stage from the diploid germ cell to the haploid gametes may cause significant deviations from Mendelian inheritance and may be more widespread than previously assumed. The mechanisms that affect and potentially alter the genomic sequence and allele frequencies in the germline are pivotal to our understanding of heritability. With the rise of new sequencing technologies, we are now able to address some of these unanswered questions. In this review, we comment on the most recent developments in this field and identify current gaps in our knowledge.
  •  
3.
  • Bertram, Michael G., et al. (författare)
  • Frontiers in quantifying wildlife behavioural responses to chemical pollution
  • 2022
  • Ingår i: Biological Reviews. - : John Wiley & Sons. - 1464-7931 .- 1469-185X. ; 97:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Animal behaviour is remarkably sensitive to disruption by chemical pollution, with widespread implications for ecological and evolutionary processes in contaminated wildlife populations. However, conventional approaches applied to study the impacts of chemical pollutants on wildlife behaviour seldom address the complexity of natural environments in which contamination occurs. The aim of this review is to guide the rapidly developing field of behavioural ecotoxicology towards increased environmental realism, ecological complexity, and mechanistic understanding. We identify research areas in ecology that to date have been largely overlooked within behavioural ecotoxicology but which promise to yield valuable insights, including within- and among-individual variation, social networks and collective behaviour, and multi-stressor interactions. Further, we feature methodological and technological innovations that enable the collection of data on pollutant-induced behavioural changes at an unprecedented resolution and scale in the laboratory and the field. In an era of rapid environmental change, there is an urgent need to advance our understanding of the real-world impacts of chemical pollution on wildlife behaviour. This review therefore provides a roadmap of the major outstanding questions in behavioural ecotoxicology and highlights the need for increased cross-talk with other disciplines in order to find the answers.
  •  
4.
  • Bose, Aneesh (författare)
  • Parent-offspring cannibalism throughout the animal kingdom: a review of adaptive hypotheses
  • 2022
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 97, s. 1868-1885
  • Forskningsöversikt (refereegranskat)abstract
    • Parents that kill and consume their offspring often appear to be acting against their own reproductive interests. Yet parent-offspring cannibalism is common and taxonomically widespread across the animal kingdom. In this review, I provide an overview of our current understanding of parent-offspring cannibalism, which has seen a proliferation in adaptive hypotheses over the past 20 years for why parents consume their own young. I review over four decades of research into this perplexing behaviour, drawing from work conducted on fishes, reptiles, insects, birds, and mammals among other taxa. Many factors have been hypothesised to explain parent-offspring cannibalism in nature, including poor parental energy reserves, small or large brood sizes, low or uncertain parentage, and high brood densities, and additional factors are still being uncovered. Parent-offspring cannibalism does not appear to have a single predominant explanation; rather, the factor, or set of factors, that govern its expression is largely taxon specific. Parents may either consume all offspring under their care (full-brood cannibalism) or consume a fraction of their offspring (partial brood cannibalism). These forms of cannibalism are thought to provide adaptive benefits to cannibals under a range of circumstances, primarily by allowing parents to allocate parental efforts more optimally - energy from eating (some of) one's current offspring can be redirected to other offspring, or to parental growth, survival, and ultimately to other future reproductive endeavours. Thus, parent-offspring cannibalism is a phenotypically plastic trait that responds to changing environmental, social, and physiological conditions. The expression of parent-offspring cannibalism in any given system is intimately linked to the reproductive value of current young relative to parents' expectations for future reproduction, and also to whether parental care is predominantly depreciable or non-depreciable. Furthermore, parent-offspring cannibalism has the potential to generate conflict between the sexes, and I briefly discuss some consequences of this conflict on patterns of mate choice. Finally, there still remain many aspects of this behaviour where our understanding is poor, and I highlight these topics to help guide future research.
  •  
5.
  • Clark, M. S., et al. (författare)
  • Deciphering mollusc shell production: the roles of genetic mechanisms through to ecology, aquaculture and biomimetics
  • 2020
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 95:6, s. 1812-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Most molluscs possess shells, constructed from a vast array of microstructures and architectures. The fully formed shell is composed of calcite or aragonite. These CaCO(3)crystals form complex biocomposites with proteins, which although typically less than 5% of total shell mass, play significant roles in determining shell microstructure. Despite much research effort, large knowledge gaps remain in how molluscs construct and maintain their shells, and how they produce such a great diversity of forms. Here we synthesize results on how shell shape, microstructure, composition and organic content vary among, and within, species in response to numerous biotic and abiotic factors. At the local level, temperature, food supply and predation cues significantly affect shell morphology, whilst salinity has a much stronger influence across latitudes. Moreover, we emphasize how advances in genomic technologies [e.g. restriction site-associated DNA sequencing (RAD-Seq) and epigenetics] allow detailed examinations of whether morphological changes result from phenotypic plasticity or genetic adaptation, or a combination of these. RAD-Seq has already identified single nucleotide polymorphisms associated with temperature and aquaculture practices, whilst epigenetic processes have been shown significantly to modify shell construction to local conditions in, for example, Antarctica and New Zealand. We also synthesize results on the costs of shell construction and explore how these affect energetic trade-offs in animal metabolism. The cellular costs are still debated, with CaCO(3)precipitation estimates ranging from 1-2 J/mg to 17-55 J/mg depending on experimental and environmental conditions. However, organic components are more expensive (similar to 29 J/mg) and recent data indicate transmembrane calcium ion transporters can involve considerable costs. This review emphasizes the role that molecular analyses have played in demonstrating multiple evolutionary origins of biomineralization genes. Although these are characterized by lineage-specific proteins and unique combinations of co-opted genes, a small set of protein domains have been identified as a conserved biomineralization tool box. We further highlight the use of sequence data sets in providing candidate genes forin situlocalization and protein function studies. The former has elucidated gene expression modularity in mantle tissue, improving understanding of the diversity of shell morphology synthesis. RNA interference (RNAi) and clustered regularly interspersed short palindromic repeats - CRISPR-associated protein 9 (CRISPR-Cas9) experiments have provided proof of concept for use in the functional investigation of mollusc gene sequences, showing for example that Pif (aragonite-binding) protein plays a significant role in structured nacre crystal growth and that theLsdia1gene sets shell chirality inLymnaea stagnalis. Much research has focused on the impacts of ocean acidification on molluscs. Initial studies were predominantly pessimistic for future molluscan biodiversity. However, more sophisticated experiments incorporating selective breeding and multiple generations are identifying subtle effects and that variability within mollusc genomes has potential for adaption to future conditions. Furthermore, we highlight recent historical studies based on museum collections that demonstrate a greater resilience of molluscs to climate change compared with experimental data. The future of mollusc research lies not solely with ecological investigations into biodiversity, and this review synthesizes knowledge across disciplines to understand biomineralization. It spans research ranging from evolution and development, through predictions of biodiversity prospects and future-proofing of aquaculture to identifying new biomimetic opportunities and societal benefits from recycling shell products.
  •  
6.
  • Edelaar, Pim, 1970-, et al. (författare)
  • A generalised approach to the study and understanding of adaptive evolution
  • 2023
  • Ingår i: Biological Reviews. - : John Wiley & Sons. - 1464-7931 .- 1469-185X. ; 98:1, s. 352-375
  • Tidskriftsartikel (refereegranskat)abstract
    • Evolutionary theory has made large impacts on our understanding and management of the world, in part because it has been able to incorporate new data and new insights successfully. Nonetheless, there is currently a tension between certain biological phenomena and mainstream evolutionary theory. For example, how does the inheritance of molecular epigenetic changes fit into mainstream evolutionary theory? Is niche construction an evolutionary process? Is local adaptation via habitat choice also adaptive evolution? These examples suggest there is scope (and perhaps even a need) to broaden our views on evolution. We identify three aspects whose incorporation into a single framework would enable a more generalised approach to the understanding and study of adaptive evolution: (i) a broadened view of extended phenotypes; (ii) that traits can respond to each other; and (iii) that inheritance can be non-genetic. We use causal modelling to integrate these three aspects with established views on the variables and mechanisms that drive and allow for adaptive evolution. Our causal model identifies natural selection and non-genetic inheritance of adaptive parental responses as two complementary yet distinct and independent drivers of adaptive evolution. Both drivers are compatible with the Price equation; specifically, non-genetic inheritance of parental responses is captured by an often-neglected component of the Price equation. Our causal model is general and simplified, but can be adjusted flexibly in terms of variables and causal connections, depending on the research question and/or biological system. By revisiting the three examples given above, we show how to use it as a heuristic tool to clarify conceptual issues and to help design empirical research. In contrast to a gene-centric view defining evolution only in terms of genetic change, our generalised approach allows us to see evolution as a change in the whole causal structure, consisting not just of genetic but also of phenotypic and environmental variables.
  •  
7.
  • Ghisbain, Guillaume, et al. (författare)
  • Expanding insect pollinators in the Anthropocene
  • 2021
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 96:6, s. 2755-2770
  • Tidskriftsartikel (refereegranskat)abstract
    • Global changes are severely affecting pollinator insect communities worldwide, resulting in repeated patterns of species extirpations and extinctions. Whilst negative population trends within this functional group have understandably received much attention in recent decades, another facet of global changes has been overshadowed: species undergoing expansion. Here, we review the factors and traits that have allowed a fraction of the pollinating entomofauna to take advantage of global environmental change. Sufficient mobility, high resistance to acute heat stress, and inherent adaptation to warmer climates appear to be key traits that allow pollinators to persist and even expand in the face of climate change. An overall flexibility in dietary and nesting requirements is common in expanding species, although niche specialization can also drive expansion under specific contexts. The numerous consequences of wild and domesticated pollinator expansions, including competition for resources, pathogen spread, and hybridization with native wildlife, are also discussed. Overall, we show that the traits and factors involved in the success stories of expanding pollinators are mostly species specific and context dependent, rendering generalizations of 'winning traits' complicated. This work illustrates the increasing need to consider expansion and its numerous consequences as significant facets of global changes and encourages efforts to monitor the impacts of expanding insect pollinators, particularly exotic species, on natural ecosystems.
  •  
8.
  • Hyndes, G. A., et al. (författare)
  • The role of inputs of marine wrack and carrion in sandy-beach ecosystems: a global review
  • 2022
  • Ingår i: Biological Reviews Cambridge Philosophical Society. - : Wiley. - 1464-7931 .- 1469-185X. ; 97:6, s. 2127-61
  • Forskningsöversikt (refereegranskat)abstract
    • Sandy beaches are iconic interfaces that functionally link the ocean with the land via the flow of organic matter from the sea. These cross-ecosystem fluxes often comprise uprooted seagrass and dislodged macroalgae that can form substantial accumulations of detritus, termed 'wrack', on sandy beaches. In addition, the tissue of the carcasses of marine animals that regularly wash up on beaches form a rich food source ('carrion') for a diversity of scavenging animals. Here, we provide a global review of how wrack and carrion provide spatial subsidies that shape the structure and functioning of sandy-beach ecosystems (sandy beaches and adjacent surf zones), which typically have little in situ primary production. We also examine the spatial scaling of the influence of these processes across the broader land- and seascape, and identify key gaps in our knowledge to guide future research directions and priorities. Large quantities of detrital kelp and seagrass can flow into sandy-beach ecosystems, where microbial decomposers and animals process it. The rates of wrack supply and its retention are influenced by the oceanographic processes that transport it, the geomorphology and landscape context of the recipient beaches, and the condition, life history and morphological characteristics of the macrophyte taxa that are the ultimate source of wrack. When retained in beach ecosystems, wrack often creates hotspots of microbial metabolism, secondary productivity, biodiversity, and nutrient remineralization. Nutrients are produced during wrack breakdown, and these can return to coastal waters in surface flows (swash) and aquifers discharging into the subtidal surf. Beach-cast kelp often plays a key trophic role, being an abundant and preferred food source for mobile, semi-aquatic invertebrates that channel imported algal matter to predatory invertebrates, fish, and birds. The role of beach-cast marine carrion is likely to be underestimated, as it can be consumed rapidly by highly mobile scavengers (e.g. foxes, coyotes, raptors, vultures). These consumers become important vectors in transferring marine productivity inland, thereby linking marine and terrestrial ecosystems. Whilst deposits of organic matter on sandy-beach ecosystems underpin a range of ecosystem functions and services, they can be at variance with aesthetic perceptions resulting in widespread activities, such as 'beach cleaning and grooming'. This practice diminishes the energetic base of food webs, intertidal fauna, and biodiversity. Global declines in seagrass beds and kelp forests (linked to global warming) are predicted to cause substantial reductions in the amounts of marine organic matter reaching many beach ecosystems, likely causing flow-on effects for food webs and biodiversity. Similarly, future sea-level rise and increased storm frequency are likely to alter profoundly the physical attributes of beaches, which in turn can change the rates at which beaches retain and process the influxes of wrack and animal carcasses. Conservation of the multi-faceted ecosystem services that sandy beaches provide will increasingly need to encompass a greater societal appreciation and the safeguarding of ecological functions reliant on beach-cast organic matter on innumerable ocean shores worldwide.
  •  
9.
  • Lind, Lovisa, et al. (författare)
  • Direct and indirect effects of climate change on distribution and community composition of macrophytes in lentic systems
  • 2022
  • Ingår i: Biological Reviews. - : John Wiley & Sons. - 1464-7931 .- 1469-185X. ; 97:4, s. 1677-1690
  • Tidskriftsartikel (refereegranskat)abstract
    • Macrophytes are an important part of freshwater ecosystems and they have direct and indirect roles in keeping the water clear and providing structure and habitats for other aquatic organisms. Currently, climate change is posing a major threat to macrophyte communities by altering the many drivers that determine macrophyte abundance and composition. We synthesise current literature to examine the direct effects of climate change (i.e. changes in CO2, temperature, and precipitation patterns) on aquatic macrophytes in lakes as well as indirect effects via invasive species and nutrient dynamics. The combined effects of climate change are likely to lead to an increased abundance and distribution of emergent and floating species, and a decreased abundance and distribution of submerged macrophytes. In small shallow lakes, these processes are likely to be faster than in deep temperate lakes; with lower light levels, water level fluctuations and increases in temperature, the systems will become dominated by algae. In general, specialized macrophyte species in high-latitude and high-altitude areas will decrease in number while more competitive invasive species are likely to outcompete native species. Given that the majority of endemic species reside in tropical lakes, climate change, together with other anthropogenic pressures, might cause the extinction of a large number of endemic species. Lakes at higher altitudes in tropical areas could therefore potentially be a hotspot for future conservation efforts for protecting endemic macrophyte species. In response to a combination of climate-change induced threats, the macrophyte community might collapse, which will change the status of lakes and may initiate a negative feedback loop that will affect entire lake ecosystems.
  •  
10.
  • Manca, Federica, et al. (författare)
  • Unveiling the complexity and ecological function of aquatic macrophyte–animal networks in coastal ecosystems
  • 2022
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 97:4, s. 1306-1324
  • Tidskriftsartikel (refereegranskat)abstract
    • Network theory offers innovative tools to explore the complex ecological mechanisms regulating species associations and interactions. Although interest in ecological networks has grown steadily during the last two decades, the application of network approaches has been unequally distributed across different study systems: while some kinds of interactions (e.g. plant–pollinator and host–parasite) have been extensively investigated, others remain relatively unexplored. Among the latter, aquatic macrophyte–animal associations in coastal environments have been largely neglected, despite their major role in littoral ecosystems. The ubiquity of macrophyte systems, their accessibility and multi-faceted ecological, economical and societal importance make macrophyte–animal systems an ideal subject for ecological network science. In fact, macrophyte–animal networks offer an aquatic counterpart to terrestrial plant–animal networks. In this review, we show how the application of network analysis to aquatic macrophyte–animal associations has the potential to broaden our understanding of how coastal ecosystems function. Network analysis can also provide a key to understanding how such ecosystems will respond to on-going and future threats from anthropogenic disturbance and environmental change. For this, we: (i) identify key issues that have limited the application of network theory and modelling to aquatic animal–macrophyte associations; (ii) illustrate through examples based on empirical data how network analysis can offer new insights on the complexity and functioning of coastal ecosystems; and (iii) provide suggestions for how to design future studies and establish this new research line into network ecology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (12)
forskningsöversikt (4)
Typ av innehåll
refereegranskat (16)
Författare/redaktör
Hylander, Kristoffer (1)
Fick, Jerker (1)
Abarenkov, Kessy (1)
Nilsson, R. Henrik, ... (1)
Morris, J. (1)
Moretti, Marco (1)
visa fler...
Roslin, Tomas (1)
Power, D. M. (1)
Sundell, Kristina, 1 ... (1)
Angeler, David (1)
Hambäck, Peter A. (1)
Duarte, C (1)
Powell, Jeff (1)
Mc Callum, Erin (1)
Hellström, Gustav (1)
Immler, Simone (1)
Potts, Simon G. (1)
Burkle, Laura A. (1)
Petanidou, Theodora (1)
Haerty, Wilfried (1)
Norkko, Alf (1)
Bertram, Michael G. (1)
Gustafsson, Camilla (1)
Strona, Giovanni (1)
Dupont, Samuel, 1971 (1)
Lind, Lovisa (1)
Relyea, Rick A. (1)
Suh, Alexander (1)
Sanders, T (1)
Beudert, Burkhard (1)
Melzner, F. (1)
Brodin, Tomas (1)
Nakagawa, Shinichi (1)
Berdan, Emma L, 1983 (1)
Bergero, Roberta (1)
Ellis, Peter (1)
Larcombe, Lee (1)
Macaulay, Iain (1)
Mehta, Tarang (1)
Mogensen, Mette (1)
Murray, David (1)
Nash, Will (1)
Neale, Matthew J. (1)
O'Connor, Rebecca (1)
Ottolini, Christian (1)
Peel, Ned (1)
Ramsey, Luke (1)
Skinner, Ben (1)
Summers, Michael (1)
Sun, Yu (1)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (6)
Stockholms universitet (4)
Göteborgs universitet (3)
Uppsala universitet (3)
Karlstads universitet (2)
Umeå universitet (1)
visa fler...
Lunds universitet (1)
visa färre...
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (16)
Medicin och hälsovetenskap (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy