SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1476 4598 srt2:(2020-2024)"

Sökning: L773:1476 4598 > (2020-2024)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cheray, M, et al. (författare)
  • Cytosine methylation of mature microRNAs inhibits their functions and is associated with poor prognosis in glioblastoma multiforme
  • 2020
  • Ingår i: Molecular cancer. - : Springer Science and Business Media LLC. - 1476-4598. ; 19:1, s. 36-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundLiterature reports that mature microRNA (miRNA) can be methylated at adenosine, guanosine and cytosine. However, the molecular mechanisms involved in cytosine methylation of miRNAs have not yet been fully elucidated. Here we investigated the biological role and underlying mechanism of cytosine methylation in miRNAs in glioblastoma multiforme (GBM).MethodsRNA immunoprecipitation with the anti-5methylcytosine (5mC) antibody followed by Array, ELISA, dot blot, incorporation of a radio-labelled methyl group in miRNA, and miRNA bisulfite sequencing were perfomred to detect the cytosine methylation in mature miRNA. Cross-Linking immunoprecipiation qPCR, transfection with methylation/unmethylated mimic miRNA, luciferase promoter reporter plasmid, Biotin-tagged 3’UTR/mRNA or miRNA experiments and in vivo assays were used to investigate the role of methylated miRNAs. Finally, the prognostic value of methylated miRNAs was analyzed in a cohorte of GBM pateints.ResultsOur study reveals that a significant fraction of miRNAs contains 5mC. Cellular experiments show that DNMT3A/AGO4 methylated miRNAs at cytosine residues inhibit the formation of miRNA/mRNA duplex and leading to the loss of their repressive function towards gene expression. In vivo experiments show that cytosine-methylation of miRNA abolishes the tumor suppressor function of miRNA-181a-5p miRNA for example. Our study also reveals that cytosine-methylation of miRNA-181a-5p results is associated a poor prognosis in GBM patients.ConclusionTogether, our results indicate that the DNMT3A/AGO4-mediated cytosine methylation of miRNA negatively.Graphical abstract
  •  
2.
  • Figiel, Sandy, et al. (författare)
  • Spatial transcriptomic analysis of virtual prostate biopsy reveals confounding effect of tissue heterogeneity on genomic signatures
  • 2023
  • Ingår i: Molecular Cancer. - : Springer Nature. - 1476-4598. ; 22:1, s. 162-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Genetic signatures have added a molecular dimension to prognostics and therapeutic decision-making. However, tumour heterogeneity in prostate cancer and current sampling methods could confound accurate assessment. Based on previously published spatial transcriptomic data from multifocal prostate cancer, we created virtual biopsy models that mimic conventional biopsy placement and core size. We then analysed the gene expression of different prognostic signatures (OncotypeDx®, Decipher®, Prostadiag®) using a step-wise approach with increasing resolution from pseudo-bulk analysis of the whole biopsy, to differentiation by tissue subtype (benign, stroma, tumour), followed by distinct tumour grade and finally clonal resolution. The gene expression profile of virtual tumour biopsies revealed clear differences between grade groups and tumour clones, compared to a benign control, which were not reflected in bulk analyses. This suggests that bulk analyses of whole biopsies or tumour-only areas, as used in clinical practice, may provide an inaccurate assessment of gene profiles. The type of tissue, the grade of the tumour and the clonal composition all influence the gene expression in a biopsy. Clinical decision making based on biopsy genomics should be made with caution while we await more precise targeting and cost-effective spatial analyses.
  •  
3.
  •  
4.
  • Karakostis, Konstantinos, et al. (författare)
  • The DNA damage sensor ATM kinase interacts with the p53 mRNA and guides the DNA damage response pathway
  • 2024
  • Ingår i: Molecular Cancer. - : Springer Nature. - 1476-4598. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The ATM kinase constitutes a master regulatory hub of DNA damage and activates the p53 response pathway by phosphorylating the MDM2 protein, which develops an affinity for the p53 mRNA secondary structure. Disruption of this interaction prevents the activation of the nascent p53. The link of the MDM2 protein—p53 mRNA interaction with the upstream DNA damage sensor ATM kinase and the role of the p53 mRNA in the DNA damage sensing mechanism, are still highly anticipated.Methods: The proximity ligation assay (PLA) has been extensively used to reveal the sub-cellular localisation of the protein—mRNA and protein–protein interactions. ELISA and co-immunoprecipitation confirmed the interactions in vitro and in cells.Results: This study provides a novel mechanism whereby the p53 mRNA interacts with the ATM kinase enzyme and shows that the L22L synonymous mutant, known to alter the secondary structure of the p53 mRNA, prevents the interaction. The relevant mechanistic roles in the DNA Damage Sensing pathway, which is linked to downstream DNA damage response, are explored. Following DNA damage (double-stranded DNA breaks activating ATM), activated MDMX protein competes the ATM—p53 mRNA interaction and prevents the association of the p53 mRNA with NBS1 (MRN complex). These data also reveal the binding domains and the phosphorylation events on ATM that regulate the interaction and the trafficking of the complex to the cytoplasm.Conclusion: The presented model shows a novel interaction of ATM with the p53 mRNA and describes the link between DNA Damage Sensing with the downstream p53 activation pathways; supporting the rising functional implications of synonymous mutations altering secondary mRNA structures.
  •  
5.
  • Li, SP, et al. (författare)
  • DREAM: a database of experimentally supported protein-coding RNAs and drug associations in human cancer
  • 2021
  • Ingår i: Molecular cancer. - : Springer Science and Business Media LLC. - 1476-4598. ; 20:1, s. 148-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The Drug Response Gene Expression Associated Map, also referred as “DREAM” (http://bio-big-data.cn:8080/DREAM), is a manually curated database of experimentally supported protein-coding RNAs and drugs associations in human cancers. The current version of the DREAM documents 3048 entries about scientific literatures supported drug sensitivity or drug intervention related protein-coding RNAs from PubMed database and 195 high-throughput microarray data about drug sensitivity or drug intervention related protein-coding RNAs data from GEO database. Each entry in DREAM database contains detailed information on protein-coding RNA, drug, cancer, and other information including title, PubMed ID, journal, publish time. The DREAM database also provides some data visualization and online analysis services such as volcano plot, GO/KEGG enrichment function analysis, and novel drug discovery analysis. We hope the DREAM database should serve as a valuable resource for clinical practice and basic research, which could help researchers better understand the effects of protein-coding RNAs on drug response in human cancers.
  •  
6.
  • Malara, Natalia, et al. (författare)
  • Multicancer screening test based on the detection of circulating non haematological proliferating atypical cells
  • 2024
  • Ingår i: Molecular Cancer. - : BMC. - 1476-4598. ; 23:1
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background the problem in early diagnosis of sporadic cancer is understanding the individual's risk to develop disease. In response to this need, global scientific research is focusing on developing predictive models based on non-invasive screening tests. A tentative solution to the problem may be a cancer screening blood-based test able to discover those cell requirements triggering subclinical and clinical onset latency, at the stage when the cell disorder, i.e. atypical epithelial hyperplasia, is still in a subclinical stage of proliferative dysregulation. Methods a well-established procedure to identify proliferating circulating tumor cells was deployed to measure the cell proliferation of circulating non-haematological cells which may suggest tumor pathology. Moreover, the data collected were processed by a supervised machine learning model to make the prediction. Results the developed test combining circulating non-haematological cell proliferation data and artificial intelligence shows 98.8% of accuracy, 100% sensitivity, and 95% specificity. Conclusion this proof of concept study demonstrates that integration of innovative non invasive methods and predictive-models can be decisive in assessing the health status of an individual, and achieve cutting-edge results in cancer prevention and management.
  •  
7.
  • Redmer, Torben, et al. (författare)
  • JUN mediates the senescence associated secretory phenotype and immune cell recruitment to prevent prostate cancer progression
  • 2024
  • Ingår i: Molecular Cancer. - : BioMed Central (BMC). - 1476-4598. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Prostate cancer develops through malignant transformation of the prostate epithelium in a stepwise, mutation-driven process. Although activator protein-1 transcription factors such as JUN have been implicated as potential oncogenic drivers, the molecular programs contributing to prostate cancer progression are not fully understood.Methods: We analyzed JUN expression in clinical prostate cancer samples across different stages and investigated its functional role in a Pten-deficient mouse model. We performed histopathological examinations, transcriptomic analyses and explored the senescence-associated secretory phenotype in the tumor microenvironment.Results: Elevated JUN levels characterized early-stage prostate cancer and predicted improved survival in human and murine samples. Immune-phenotyping of Pten-deficient prostates revealed high accumulation of tumor-infiltrating leukocytes, particularly innate immune cells, neutrophils and macrophages as well as high levels of STAT3 activation and IL-1β production. Jun depletion in a Pten-deficient background prevented immune cell attraction which was accompanied by significant reduction of active STAT3 and IL-1β and accelerated prostate tumor growth. Comparative transcriptome profiling of prostate epithelial cells revealed a senescence-associated gene signature, upregulation of pro-inflammatory processes involved in immune cell attraction and of chemokines such as IL-1β, TNF-α, CCL3 and CCL8 in Pten-deficient prostates. Strikingly, JUN depletion reversed both the senescence-associated secretory phenotype and senescence-associated immune cell infiltration but had no impact on cell cycle arrest. As a result, JUN depletion in Pten-deficient prostates interfered with the senescence-associated immune clearance and accelerated tumor growth.Conclusions: Our results suggest that JUN acts as tumor-suppressor and decelerates the progression of prostate cancer by transcriptional regulation of senescence- and inflammation-associated genes. This study opens avenues for novel treatment strategies that could impede disease progression and improve patient outcomes. Graphical Abstract: (Figure presented.).
  •  
8.
  • Solta, Anna, et al. (författare)
  • Small cells – big issues : biological implications and preclinical advancements in small cell lung cancer
  • 2024
  • Ingår i: Molecular Cancer. - 1476-4598. ; 23:1
  • Forskningsöversikt (refereegranskat)abstract
    • Current treatment guidelines refer to small cell lung cancer (SCLC), one of the deadliest human malignancies, as a homogeneous disease. Accordingly, SCLC therapy comprises chemoradiation with or without immunotherapy. Meanwhile, recent studies have made significant advances in subclassifying SCLC based on the elevated expression of the transcription factors ASCL1, NEUROD1, and POU2F3, as well as on certain inflammatory characteristics. The role of the transcription regulator YAP1 in defining a unique SCLC subset remains to be established. Although preclinical analyses have described numerous subtype-specific characteristics and vulnerabilities, the so far non-existing clinical subtype distinction may be a contributor to negative clinical trial outcomes. This comprehensive review aims to provide a framework for the development of novel personalized therapeutic approaches by compiling the most recent discoveries achieved by preclinical SCLC research. We highlight the challenges faced due to limited access to patient material as well as the advances accomplished by implementing state-of-the-art models and methodologies.
  •  
9.
  • Tong, L, et al. (författare)
  • NK cells and solid tumors: therapeutic potential and persisting obstacles
  • 2022
  • Ingår i: Molecular cancer. - : Springer Science and Business Media LLC. - 1476-4598. ; 21:1, s. 206-
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural killer (NK) cells, which are innate lymphocytes endowed with potent cytotoxic activity, have recently attracted attention as potential anticancer therapeutics. While NK cells mediate encouraging responses in patients with leukemia, the therapeutic effects of NK cell infusion in patients with solid tumors are limited. Preclinical and clinical data suggest that the efficacy of NK cell infusion against solid malignancies is hampered by several factors including inadequate tumor infiltration and persistence/activation in the tumor microenvironment (TME). A number of metabolic features of the TME including hypoxia as well as elevated levels of adenosine, reactive oxygen species, and prostaglandins negatively affect NK cell activity. Moreover, cancer-associated fibroblasts, tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells actively suppress NK cell-dependent anticancer immunity. Here, we review the metabolic and cellular barriers that inhibit NK cells in solid neoplasms as we discuss potential strategies to circumvent such obstacles towards superior therapeutic activity.
  •  
10.
  • Östman, Johnny, et al. (författare)
  • STAT3/LKB1 controls metastatic prostate cancer by regulating mTORC1/CREB pathway
  • 2023
  • Ingår i: Molecular Cancer. - 1476-4598. ; 22
  • Tidskriftsartikel (refereegranskat)abstract
    • Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa. Here we show a frequent genomic co-deletion of PTEN and STAT3 in liquid biopsies of patients with mPCa. Loss of Stat3 in a Pten-null mouse prostate model leads to a reduction of LKB1/pAMPK with simultaneous activation of mTOR/CREB, resulting in metastatic disease. However, constitutive activation of Stat3 led to high LKB1/pAMPK levels and suppressed mTORC1/CREB pathway, preventing mPCa development. Metformin, one of the most widely prescribed therapeutics against type 2 diabetes, inhibits mTORC1 in liver and requires LKB1 to mediate glucose homeostasis. We find that metformin treatment of STAT3/AR-expressing PCa xenografts resulted in significantly reduced tumor growth accompanied by diminished mTORC1/CREB, AR and PSA levels. PCa xenografts with deletion of STAT3/AR nearly completely abrogated mTORC1/CREB inhibition mediated by metformin. Moreover, metformin treatment of PCa patients with high Gleason grade and type 2 diabetes resulted in undetectable mTORC1 levels and upregulated STAT3 expression. Furthermore, PCa patients with high CREB expression have worse clinical outcomes and a significantly increased risk of PCa relapse and metastatic recurrence. In summary, we have shown that STAT3 controls mPCa via LKB1/pAMPK/mTORC1/CREB signaling, which we have identified as a promising novel downstream target for the treatment of lethal mPCa.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy