SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1476 5586 srt2:(2020-2022)"

Search: L773:1476 5586 > (2020-2022)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Bozoky, Benedek, et al. (author)
  • Stabilization of the classical phenotype upon integration of pancreatic cancer cells into the duodenal epithelium
  • 2021
  • In: Neoplasia. - : Elsevier. - 1522-8002 .- 1476-5586. ; 23:12, s. 1300-1306
  • Journal article (peer-reviewed)abstract
    • Introduction: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid tumors. Based on transcriptomic classifiers, basal-like and classical PDAC subtypes have been defined that differ in prognosis. Cells of both subtypes can coexist in individual tumors; however, the contribution of either clonal heterogeneity or microenvironmental cues to subtype heterogeneity is unclear. Here, we report the spatial tumor phenotype dynamics in a cohort of patients in whom PDAC infiltrated the duodenal wall, and identify the duodenal epithelium as a distinct PDAC microniche. Materials and methods: We used serial multiplex quantitative immunohistochemistry (smq-IHC) for 24 proteins to phenotypically chart PDAC tumor cells in patients whose tumors infiltrated the duodenal epithelium. Additionally, we used a genetically engineered mouse model to study the PDAC cell phenotype in the small intestinal epithelium in a controlled genetic background. Result: We show that pancreatic cancer cells revert to non-destructive growth upon integration into the duodenal epithelium, where they adopt traits of intestinal cell differentiation, associated with phenotypical stabilization of the classical subtype. The integrated tumor cells replace epithelial cells in an adenoma-like manner, as opposed to invasive growth in the submucosa. Finally, we show that this phenomenon is shared between species, by confirming duodenal integration and phenotypic switching in a genetic PDAC mouse model. Discussion: Our results identify the duodenal epithelium as a distinct PDAC microniche and tightly link microenvironmental cue to cancer transcriptional subtypes. The phenomenon of "intestinal mimicry" provides a unique opportunity for the systematic investigation of microenvironmental influences on pancreatic cancer plasticity.
  •  
4.
  • Grassi, Elisa S., et al. (author)
  • Niche-derived soluble DLK1 promotes glioma growth
  • 2020
  • In: Neoplasia (United States). - : Elsevier BV. - 1522-8002 .- 1476-5586. ; 22:12, s. 689-701
  • Journal article (peer-reviewed)abstract
    • Tumor cell behaviors associated with aggressive tumor growth such as proliferation, therapeutic resistance, and stem cell characteristics are regulated in part by soluble factors derived from the tumor microenvironment. Tumor-associated astrocytes represent a major component of the glioma tumor microenvironment, and astrocytes have an active role in maintenance of normal neural stem cells in the stem cell niche, in part via secretion of soluble delta-like noncanonical Notch ligand 1 (DLK1). We found that astrocytes, when exposed to stresses of the tumor microenvironment such as hypoxia or ionizing radiation, increased secretion of soluble DLK1. Tumor-associated astrocytes in a glioma mouse model expressed DLK1 in perinecrotic and perivascular tumor areas. Glioma cells exposed to recombinant DLK1 displayed increased proliferation, enhanced self-renewal and colony formation abilities, and increased levels of stem cell marker genes. Mechanistically, DLK1-mediated effects on glioma cells involved increased and prolonged stabilization of hypoxia-inducible factor 2alpha, and inhibition of hypoxia-inducible factor 2alpha activity abolished effects of DLK1 in hypoxia. Forced expression of soluble DLK1 resulted in more aggressive tumor growth and shortened survival in a genetically engineered mouse model of glioma. Together, our data support DLK1 as a soluble mediator of glioma aggressiveness derived from the tumor microenvironment.
  •  
5.
  • Guerra, Emanuela, et al. (author)
  • Trop-2 induces ADAM10-mediated cleavage of E-cadherin and drives EMT-less metastasis in colon cancer
  • 2021
  • In: Neoplasia. - : Elsevier Science INC. - 1522-8002 .- 1476-5586. ; 23:9, s. 898-911
  • Journal article (peer-reviewed)abstract
    • We recently reported that activation of Trop-2 through its cleavage at R87-T88 by ADAMIO underlies Trop-2-driven progression of colon cancer. However, the mechanism of action and pathological impact of Trop-2 in metastatic diffusion remain unexplored. Through searches for molecular determinants of cancer metastasis, we identified TROP2 as unique in its up-regulation across independent colon cancer metastasis models. Overexpression of wild-type Trop-2 in KM12SM human colon cancer cells increased liver metastasis rates in vivo in immunosuppressed mice. Metastatic growth was further enhanced by a tail-less, activated Delta cytoTrop-2 mutant, indicating the Trop-2 tail as a pivotal inhibitory signaling element. In primary tumors and metastases, transcriptome analysis showed no down-regulation of CDH1 by transcription factors for epithelial-to-mesenchymal transition, thus suggesting that the pro-metastatic activity of Trop-2 is through alternative mechanisms. Trop-2 can tightly interact with ADAM10. Here, Trop-2 bound E-cadherin and stimulated ADAM10-mediated proteolytic cleavage of E-cadherin intracellular domain. This induced detachment of E-cadherin from beta-actin, and loss of cell-cell adhesion, acquisition of invasive capability, and membrane-driven activation of beta-catenin signaling, which were further enhanced by the Delta cytoTrop-2 mutant. This Trop-2/E-cadherin/beta-catenin program led to anti-apoptotic signaling, increased cell migration, and enhanced cancer-cell survival. In patients with colon cancer, activation of this Trop-2-centered program led to significantly reduced relapse-free and overall survival, indicating a major impact on progression to metastatic disease. Recently, the anti-Trop-2 mAb Sacituzumab govitecan-hziy was shown to be active against metastatic breast cancer. Our findings define the key relevance of Trop-2 as a target in metastatic colon cancer.
  •  
6.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view