SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1520 0442 srt2:(2005-2009)"

Sökning: L773:1520 0442 > (2005-2009)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brandefelt, Jenny (författare)
  • Atmospheric modes of variability in a changing climate
  • 2006
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 19:22, s. 5934-5943
  • Tidskriftsartikel (refereegranskat)abstract
    • The response of the atmospheric circulation to an enhanced radiative greenhouse gas forcing in a transient integration with a coupled global climate model is investigated. The spatial patterns of the leading modes of Northern Hemisphere atmospheric variability are shown to change in response to the enhanced forcing. An earlier study showed that the spatial patterns of the leading modes in the Southern Hemisphere changed in response to the enhanced forcing. These changes were associated with changes in the propagation conditions for barotropic Rossby waves. This is, however, not the case for the Northern Hemisphere, where the propagation conditions are unchanged. Other possible mechanisms for the changes in the spatial patterns of the leading modes are discussed.
  •  
2.
  • Brandefelt, Jenny, et al. (författare)
  • Northern Hemisphere Stationary Waves in Future Climate Projections
  • 2008
  • Ingår i: Journal of Climate. - : American Meteorological Society. - 0894-8755 .- 1520-0442. ; 21:23, s. 6341-6353
  • Tidskriftsartikel (refereegranskat)abstract
    • The response of the atmospheric large-scale circulation to an enhanced greenhouse gas (GHG) forcing varies among coupled global climate model (CGCM) simulations. In this study, 16 CGCM simulations of the response of the climate system to a 1% yr(-1) increase in the atmospheric CO2 concentration to quadrupling are analyzed with focus on Northern Hemisphere winter. A common signal in 14 out of the 16 simulations is an increased or unchanged stationary wave amplitude. A majority of the simulations may be categorized into one of three groups based on the GHG-induced changes in the atmospheric stationary waves. The response of the zonal mean barotropic wind is similar within each group. Fifty percent of the simulations belong to the first group, which is categorized by a stationary wave with five waves encompassing the entire NH and a strengthening of the zonal mean barotropic wind. The second and third groups, respectively consisting of three and two simulations, are characterized by a broadening and a northward shift of the zonal mean barotropic wind, respectively. A linear model of barotropic vorticity is employed to study the importance of these mean flow changes to the stationary wave response. The linear calculations indicate that the GHG-induced mean wind changes explain 50%, 4%, and 37% of the stationary wave changes in each group, respectively. Thus, for the majority of simulations the zonal mean wind changes do significantly explain the stationary wave response.
  •  
3.
  • Fomichev, V. I., et al. (författare)
  • Response of the middle atmosphere to CO2 doubling : Results from the Canadian Middle Atmosphere Model
  • 2007
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 20:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The Canadian Middle Atmosphere Model (CMAM) has been used to examine the middle atmosphere response to CO2 doubling. The radiative-photochemical response induced by doubling CO2 alone and the response produced by changes in prescribed SSTs are found to be approximately additive, with the former effect dominating throughout the middle atmosphere. The paper discusses the overall response, with emphasis on the effects of SST changes, which allow a tropospheric response to the CO2 forcing. The overall response is a cooling of the middle atmosphere accompanied by significant increases in the ozone and water vapor abundances. The ozone radiative feedback occurs through both an increase in solar heating and a decrease in infrared cooling, with the latter accounting for up to 15% of the total effect. Changes in global mean water vapor cooling are negligible above 30 hPa. Near the polar summer mesopause, the temperature response is weak and not statistically significant. The main effects of SST changes are a warmer troposphere, a warmer and higher tropopause, cell-like structures of heating and cooling at low and middlelatitudes in the middle atmosphere, warming in the summer mesosphere, water vapor increase throughout the domain, and O3 decrease in the lower tropical stratosphere. No noticeable change in upward-propagating planetary wave activity in the extratropical winter–spring stratosphere and no significant temperature response in the polar winter–spring stratosphere have been detected. Increased upwelling in the tropical stratosphere has been found to be linked to changed wave driving at low latitudes.
  •  
4.
  • Hong, Gang, et al. (författare)
  • Interannual to diurnal variations in tropical and subtropical deep convective clouds and convective overshooting from seven years of AMSU-B measurements
  • 2008
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 21:17, s. 4168-4189
  • Tidskriftsartikel (refereegranskat)abstract
    • This study surveys interannual to diurnal variations of tropical deep convective clouds and convective overshooting using the Advanced Microwave Sounding Unit B (AMSU-B) aboard the NOAA polar orbiting satellites from 1999 to 2005. The methodology used to detect tropical deep convective clouds is based on the advantage of microwave radiances to penetrate clouds. The major concentrations of tropical deep convective clouds are found over the intertropical convergence zone (ITCZ), the South Pacific convergence zone (SPCZ), tropical Africa, the Indian Ocean, the Indonesia maritime region, and tropical and South America. The geographical distributions are consistent with previous results from infrared-based measurements, but the cloud fractions present in this study are lower. Land-ocean and Northern-Southern Hemisphere (NH-SH) contrasts are found for tropical deep convective clouds. The mean tropical deep convective clouds have a slightly decreasing trend with -0.016% decade(-1) in 1999-2005 while the mean convective overshooting has a distinct decreasing trend with -0.142% decade(-1). The trends vary with the underlying surface (ocean or land) and with latitude. A secondary ITCZ occurring over the eastern Pacific between 2 degrees and 8 degrees S and only in boreal spring is predominantly found to be associated with cold sea surface temperatures in La Nina years. The seasonal cycles of deep convective cloud and convective overshooting are stronger over land than over ocean. The seasonal migration is pronounced and moves south with the sun from summer to winter and is particularly dramatic over land. The diurnal cycles of deep convective clouds and convective overshooting peak in the early evening and have their minima in the late morning over the tropical land. Over the tropical ocean the diurnal cycles peak in the morning and have their minima in the afternoon to early evening. The diurnal cycles over the NH and SH subtropical regions vary with the seasons. The local times of the maximum and minimum fractions also vary with the seasons. As the detected deep convective cloud fractions are sensitive to the algorithms and satellite sensors used and are influenced by the life cycles of deep convective clouds, the results presented in this study provide information complementary to present tropical deep convective cloud climatologies.
  •  
5.
  • Jonsson, Karin, et al. (författare)
  • Scots pine (pinus sylvestris L.) on shingle fields : a dendrochronologic reconstruction of early summer precipitation in mideast Sweden
  • 2009
  • Ingår i: Journal of Climate. - : American Meteorological Society. - 0894-8755 .- 1520-0442. ; 22:17, s. 4710-4722
  • Tidskriftsartikel (refereegranskat)abstract
    • Scots pine (Pinus sylvestris L.) trees growing on shingle fields offer a unique possibility to reconstruct precipitation and study climate variability in the fairly humid eastern part of central Sweden. Tree-ring characteristics were compared with monthly (1890–2001) and daily (1961–2001) climate data from an adjacent meteorological station. Chronologies for latewood (LW), earlywood (EW), and tree-ring widths (RW) were constructed from 73 living and dead trees. Correlation analyses show that tree growth is most sensitive to early summer precipitation. EW shows the strongest correlation with precipitation in May and June while LW is best correlated with June and July precipitation. A reconstruction model for May–June precipitation was calculated using principal component analysis (PCA) regression (regular regression) including EW, LW, and RW for present and previous years. The model explained 46% of the variation in May–June precipitation and allowed a reconstruction back to 1560. Information about wet and dry years was collected from historical documents and was used to validate the result. Periods with precipitation above and below the mean show agreement with previous reconstructions of spring precipitation from tree rings in Finland and of spring floods from estuary sediments in the region. Analyses of correlations between meteorological stations and reconstructed precipitation show that the model is valid for the coastal part of central Sweden. The authors conclude that Scots pine trees on shingle fields are well suited for precipitation reconstruction, and the separate analyses of LW and EW improve the reconstruction.
  •  
6.
  • Offerle, Brian, 1967, et al. (författare)
  • Urban modification of the surface energy balance in the West African Sahel: Ouagadougou, Burkina Faso
  • 2005
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 18:19, s. 3983-3995
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface-atmosphere energy exchanges in Ouagadougou, Burkina Faso, located in the West African Sahel, were investigated during February 2003. Basic knowledge of the impact of land cover changes on local climate is needed to understand and forecast the impacts of rapid urbanization predicted for the region. Previously collected data showed a large dry season urban heat island (UHI), which dramatically decreased with the onset of the rainy season and corresponding changes to the natural land cover thermal and radiative properties. Observations of local-scale energy balance fluxes were made over a residential district; and building surface temperatures were measured in three separate locations. Net all-wave radiation showed an increase with urbanization owing to the higher albedo, lower heat capacity, and thermal conductivity of the bare dry soil compared to the urbanized surface. The combination of material and geometry resulted in a decrease in albedo toward the urban center. Despite the higher albedo, surface temperatures of bare undisturbed soil could exceed surface temperatures in the residential area and urban center by 15 degrees-20 degrees C due to differences in thermal characteristics. Turbulent heat exchange measured over a residential area was dominated by sensible heat flux. Latent heat fluxes were greater than expected from the amount of vegetation but in accordance with water use in the area. An urban land surface scheme reproduced fluxes in agreement with measurements. The results point toward an intensification of the dry season urban heat island in Ouagadougou, given increased urbanization.
  •  
7.
  • Philipp, Andreas, et al. (författare)
  • Long-Term Variability of Daily North Atlantic–European Pressure Patterns since 1850 Classified by Simulated Annealing Clustering
  • 2007
  • Ingår i: Journal of Climate. - 1520-0442. ; 20:16, s. 4065-4095
  • Tidskriftsartikel (refereegranskat)abstract
    • Reconstructed daily mean sea level pressure patterns of the North Atlantic–European region are classified for the period 1850 to 2003 to explore long-term changes of the atmospheric circulation and its impact on long-term temperature variability in the central European region. Commonly used k-means clustering algorithms resulted in classifications of low quality because of methodological deficiencies leading to local optima by chance for complex datasets. In contrast, a newly implemented clustering scheme combining the concepts of simulated annealing and diversified randomization (SANDRA) is able to reduce substantially the influence of chance in the cluster assignment, leading to partitions that are noticeably nearer to the global optimum and more stable. The differences between conventional cluster analysis and the SANDRA scheme are significant for subsequent analyses of single clusters—in particular, for trend analysis. Conventional indices used to determine the appropriate number of clusters failed to provide clear guidance, indicating that no distinct separation between clusters of circulation types exists in the dataset. Therefore, the number of clusters is determined by an external indicator, the so-called dominance criteria for t-mode principal component analysis. Nevertheless, the resulting partitions are stable for certain numbers of clusters and provide meaningful and reproducible clusters. The resulting types of pressure patterns reveal pronounced long-term variability and various significant trends of the time series of seasonal cluster frequency. Tentative estimations of central European temperature changes based solely on seasonal cluster frequencies can explain between 33.9% (summer) and 59.0% (winter) of temperature variance on the seasonal time scale. However, the signs of long-term changes in temperature are correctly reproduced even on multidecadal–centennial time scales. Moreover, linear warming trends are reproduced, implying from one-third up to one-half of the observed temperature increase between 1851/52 and 2003 (except for summer, but with significant trends for spring and autumn), indicating that changes in daily circulation patterns contribute to the observed overall long-term warming in the central European region.
  •  
8.
  • Sahlée, Erik, et al. (författare)
  • Influence of a new turbulence regime on the global air-sea heat fluxes
  • 2008
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 21:22, s. 5925-5941
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent research has found that boundary layer turbulence changes its organization as the stratification approaches neutral from the unstable side. When the thermal forcing weakens in combination with wind speed above approximately 10 m s(-1), detached eddies are formed in the upper part of the surface layer. These eddies effectively transport drier and colder air from aloft to the surface as they move downward, thereby enhancing the surface fluxes of sensible and latent heat. This effect has been observed over both land and sea; that is, it is not dependent on the nature of the underlying surface. Here the authors perform a sensitivity study of how this reorganization of the turbulence structure influences the global air-sea heat fluxes. Using modified bulk formulations incorporating this effect, the magnitude of the enhancement in a climatic sense was estimated by the use of 40-yr ECMWF Re-Analysis (ERA-40) data in the bulk formulas. It is found that for the 1979-2001 period, the global increase of the latent and sensible heat fluxes over the ice-free oceans is 3.6 and 1.2 W m(-2), respectively. These numbers suggest that this effect is of some significance. The results also indicate that the regional and seasonal variability may be large. The largest annual increases are found over the southern oceans between 30 and 60 S where the sensible heat flux increases by 2.3 W m(-2) and the latent heat flux by 6.5 W m(-2). Ocean areas close to the equator experience almost no increase, whereas the latent heat flux from the Arabian Sea during the monsoon period is enhanced by 11.5 W m(-2).
  •  
9.
  • Scaife, Adam, et al. (författare)
  • European climate extremes and the North Atlantic Oscillation
  • 2008
  • Ingår i: Journal of Climate. - 1520-0442. ; 21:1, s. 72-83
  • Tidskriftsartikel (refereegranskat)abstract
    • The authors estimate the change in extreme winter weather events over Europe that is due to a long-term change in the North Atlantic Oscillation (NAO) such as that observed between the 1960s and 1990s. Using ensembles of simulations from a general circulation model, large changes in the frequency of 10th percentile temperature and 90th percentile precipitation events over Europe are found from changes in the NAO. In some cases, these changes are comparable to the expected change in the frequency of events due to anthropogenic forcing over the twenty-first century. Although the results presented here do not affect anthropogenic interpretation of global and annual mean changes in observed extremes, they do show that great care is needed to assess changes due to modes of climate variability when interpreting extreme events on regional and seasonal scales. How changes in natural modes of variability, such as the NAO, could radically alter current climate model predictions of changes in extreme weather events on multidecadal time scales is also discussed.
  •  
10.
  • Yang, Haijun, et al. (författare)
  • Anatomizing the Ocean´s role in ENSO changes under global warming
  • 2008
  • Ingår i: Journal of climate. - 1520-0442. ; 21:24, s. 6539-6555
  • Tidskriftsartikel (refereegranskat)abstract
    • A revisit on observations shows that the tropical El Niño–Southern Oscillation (ENSO) variability, after removing both the long-term trend and decadal variation of the background climate, has been enhanced by as much as 50% during the past 50 yr. This is inconsistent with the changes in the equatorial atmosphere, which shows a slowdown of the zonal Walker circulation and tends to stabilize the tropical coupling system. The ocean role is highlighted in this paper. The enhanced ENSO variability is attributed to the strengthened equatorial thermocline that acts as a destabilizing factor of the tropical coupling system. To quantify the dynamic effect of the ocean on the ENSO variability under the global warming, ensemble experiments are performed using a coupled climate model [Fast Ocean Atmosphere Model (FOAM)], following the “1pctto2x” scenario defined in the Intergovernmental Panel on Climate Change (IPCC) reports. Term balance analyses on the temperature variability equation show that the anomalous upwelling of the mean vertical temperature gradient (referred as the “local term”) in the eastern equatorial Pacific is the most important destabilizing factor to the temperature variabilities. The magnitude of local term and its change are controlled by its two components: the mean vertical temperature gradient Tz and the “virtual vertical heat flux” −w′T′. The former can be viewed as the background of the latter and these two components are positively correlated. A stronger Tz is usually associated with a bigger upward heat flux −w′T′, which implies a bigger impact of thermocline depth variations on SST. The Tz is first enhanced during the transient stage of the global warming with a 1% yr−1 increase of CO2, and then reduced during the equilibrium stage with a fixed doubled CO2. This turnaround in Tz determines the turnaround of ENSO variability in the entire global warming period.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy