SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1522 1210 OR L773:0031 9333 srt2:(2000-2009)"

Sökning: L773:1522 1210 OR L773:0031 9333 > (2000-2009)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allen, DG, et al. (författare)
  • Skeletal muscle fatigue: cellular mechanisms
  • 2008
  • Ingår i: Physiological reviews. - : American Physiological Society. - 0031-9333 .- 1522-1210. ; 88:1, s. 287-332
  • Tidskriftsartikel (refereegranskat)abstract
    • Repeated, intense use of muscles leads to a decline in performance known as muscle fatigue. Many muscle properties change during fatigue including the action potential, extracellular and intracellular ions, and many intracellular metabolites. A range of mechanisms have been identified that contribute to the decline of performance. The traditional explanation, accumulation of intracellular lactate and hydrogen ions causing impaired function of the contractile proteins, is probably of limited importance in mammals. Alternative explanations that will be considered are the effects of ionic changes on the action potential, failure of SR Ca2+release by various mechanisms, and the effects of reactive oxygen species. Many different activities lead to fatigue, and an important challenge is to identify the various mechanisms that contribute under different circumstances. Most of the mechanistic studies of fatigue are on isolated animal tissues, and another major challenge is to use the knowledge generated in these studies to identify the mechanisms of fatigue in intact animals and particularly in human diseases.
  •  
2.
  • Andersson, Karl-Erik, et al. (författare)
  • Urinary bladder contraction and relaxation: Physiology and pathophysiology
  • 2004
  • Ingår i: Physiological Reviews. - : American Physiological Society. - 1522-1210 .- 0031-9333. ; 84:3, s. 935-986
  • Forskningsöversikt (refereegranskat)abstract
    • The detrusor smooth muscle is the main muscle component of the urinary bladder wall. Its ability to contract over a large length interval and to relax determines the bladder function during filling and micturition. These processes are regulated by several external nervous and hormonal control systems, and the detrusor contains multiple receptors and signaling pathways. Functional changes of the detrusor can be found in several clinically important conditions, e.g., lower urinary tract symptoms (LUTS) and bladder outlet obstruction. The aim of this review is to summarize and synthesize basic information and recent advances in the understanding of the properties of the detrusor smooth muscle, its contractile system, cellular signaling, membrane properties, and cellular receptors. Alterations in these systems in pathological conditions of the bladder wall are described, and some areas for future research are suggested.
  •  
3.
  • Hallmann, Rupert, et al. (författare)
  • Expression and function of laminins in the embryonic and mature vasculature.
  • 2005
  • Ingår i: Physiological Reviews. - : American Physiological Society. - 1522-1210 .- 0031-9333. ; 85:3, s. 979-1000
  • Forskningsöversikt (refereegranskat)abstract
    • Endothelial cells of the blood and lymphatic vasculature are polarized cells with luminal surfaces specialized to interact with inflammatory cells upon the appropriate stimulation; they contain specialized transcellular transport systems, and their basal surfaces are attached to an extracellular basement membrane. In adult tissues the basement membrane forms a continuous sleeve around the endothelial tubes, and the interaction of endothelial cells with basement membrane components plays an important role in the maintenance of vessel wall integrity. During development, the basement membrane of endothelium provides distinct spatial and molecular information that influences endothelial cell proliferation, migration, and differentiation/maturation. Microvascular endothelium matures into phenotypically distinct types: continuous, fenestrated, and discontinuous, which also differ in their permeability properties. Development of these morphological and physiological differences is thought to be controlled by both soluble factors in the organ or tissue environment and by cell-cell and cell-matrix interactions. Basement membranes of endothelium, like those of other tissues, are composed of laminins, type IV collagens, heparan sulfate proteoglycans, and nidogens. However, isoforms of all four classes of molecules exist, which combine to form structurally and functionally distinct basement membranes. The endothelial cell basement membranes have been shown to be unique with respect to their laminin isoform composition. Laminins are a family of glycoprotein heterotrimers composed of an α, β, and γ chain. To date, 5α, 4β, and 3γ laminin chains have been identified that can combine to form 15 different isoforms. The laminin α-chains are considered to be the functionally important portion of the heterotrimers, as they exhibit tissue-specific distribution patterns and contain the major cell interaction sites. Vascular endothelium expresses only two laminin isoforms, and their expression varies depending on the developmental stage, vessel type, and the activation state of the endothelium. Laminin 8 (composed of laminin α4, β1, and γ1 chains) is expressed by all endothelial cells regardless of their stage of development, and its expression is strongly upregulated by cytokines and growth factors that play a role in inflammatory events. Laminin 10 (composed of laminin α5, β1, and γ1 chains) is detectable primarily in endothelial cell basement membranes of capillaries and venules commencing 3–4 wk after birth. In contrast to laminin 8, endothelial cell expression of laminin 10 is upregulated only by strong proinflammatory signals and, in addition, angiostatic agents such as progesterone. Other extracellular matrix molecules, such as BM40 (also known as SPARC/osteonectin), thrombospondins 1 and 2, fibronectin, nidogens 1 and 2, and collagen types VIII, XV, and XVIII, are also differentially expressed by endothelium, varying with the endothelium type and/or pathophysiological state. The data argue for a dynamic endothelial cell extracellular matrix that presents different molecular information depending on the type of endothelium and/or physiological situation. This review outlines the unique structural and functional features of vascular basement membranes, with focus on the endothelium and the laminin family of glycoproteins.
  •  
4.
  • Haraldsson, Börje, 1957, et al. (författare)
  • Properties of the Glomerular Barrier and Mechanisms of Proteinuria
  • 2008
  • Ingår i: Physiological Reviews. - : American Physiological Society. - 0031-9333 .- 1522-1210. ; 88:2, s. 451-487
  • Tidskriftsartikel (refereegranskat)abstract
    • This review focuses on the intricate properties of the glomerular barrier. Other reviews have focused on podocyte biology, mesangial cells, and the glomerular basement membrane (GBM). However, since all components of the glomerular membrane are important for its function, proteinuria will occur regardless of which layer is affected by disease. We review the properties of endothelial cells and their surface layer, the GBM, and podocytes, discuss various methods of studying glomerular permeability, and analyze data concerning the restriction of solutes by size, charge, and shape. We also review the physical principles of transport across biological or artificial membranes and various theoretical models used to predict the fluxes of solutes and water. The glomerular barrier is highly size and charge selective, in qualitative agreement with the classical studies performed 30 years ago. The small amounts of albumin filtered will be reabsorbed by the megalin-cubulin complex and degraded by the proximal tubular cells. At present, there is no unequivocal evidence for reuptake of intact albumin from urine. The cellular components are the key players in restricting solute transport, while the GBM is responsible for most of the resistance to water flow across the glomerular barrier.
  •  
5.
  • Heldring, N, et al. (författare)
  • Estrogen receptors: how do they signal and what are their targets
  • 2007
  • Ingår i: Physiological reviews. - : American Physiological Society. - 0031-9333 .- 1522-1210. ; 87:3, s. 905-931
  • Tidskriftsartikel (refereegranskat)abstract
    • During the past decade there has been a substantial advance in our understanding of estrogen signaling both from a clinical as well as a preclinical perspective. Estrogen signaling is a balance between two opposing forces in the form of two distinct receptors (ERα and ERβ) and their splice variants. The prospect that these two pathways can be selectively stimulated or inhibited with subtype-selective drugs constitutes new and promising therapeutic opportunities in clinical areas as diverse as hormone replacement, autoimmune diseases, prostate and breast cancer, and depression. Molecular biological, biochemical, and structural studies have generated information which is invaluable for the development of more selective and effective ER ligands. We have also become aware that ERs do not function by themselves but require a number of coregulatory proteins whose cell-specific expression explains some of the distinct cellular actions of estrogen. Estrogen is an important morphogen, and many of its proliferative effects on the epithelial compartment of glands are mediated by growth factors secreted from the stromal compartment. Thus understanding the cross-talk between growth factor and estrogen signaling is essential for understanding both normal and malignant growth. In this review we focus on several of the interesting recent discoveries concerning estrogen receptors, on estrogen as a morphogen, and on the molecular mechanisms of anti-estrogen signaling.
  •  
6.
  • Nilsson, S, et al. (författare)
  • Mechanisms of estrogen action
  • 2001
  • Ingår i: Physiological reviews. - : American Physiological Society. - 0031-9333 .- 1522-1210. ; 81:4, s. 1535-1565
  • Tidskriftsartikel (refereegranskat)abstract
    • Our appreciation of the physiological functions of estrogens and the mechanisms through which estrogens bring about these functions has changed during the past decade. Just as transgenic mice were produced in which estrogen receptors had been inactivated and we thought that we were about to understand the role of estrogen receptors in physiology and pathology, it was found that there was not one but two distinct and functional estrogen receptors, now called ERα and ERβ. Transgenic mice in which each of the receptors or both the receptors are inactive have revealed a much broader role for estrogens in the body than was previously thought. This decade also saw the description of a male patient who had no functional ERα and whose continued bone growth clearly revealed an important function of estrogen in men. The importance of estrogen in both males and females was also demonstrated in the laboratory in transgenic mice in which the aromatase gene was inactivated. Finally, crystal structures of the estrogen receptors with agonists and antagonists have revealed much about how ligand binding influences receptor conformation and how this conformation influences interaction of the receptor with coactivators or corepressors and hence determines cellular response to ligands.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy