SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1523 0864 OR L773:1557 7716 srt2:(2010-2014)"

Sökning: L773:1523 0864 OR L773:1557 7716 > (2010-2014)

  • Resultat 1-10 av 47
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arnér, Elias S J (författare)
  • Redox pioneer : Professor Arne Holmgren
  • 2011
  • Ingår i: Antioxidants and Redox Signaling. - Stockholm : Karolinska Institutet, Dept of Medical Biochemistry and Biophysics. - 1557-7716 .- 1523-0864.
  • Tidskriftsartikel (refereegranskat)abstract
    • Dr. Arne Holmgren (Ph.D., 1968) is recognized here as a redox pioneer, because he has published at least one article on redox biology that has been cited over 1000 times and has published at least 10 articles, each cited over 100 times. He is widely known for his seminal discoveries and in-depth studies of thioredoxins, thioredoxin reductases, and glutaredoxins. Dr. Holmgren, active throughout his career at Karolinska Institutet, Sweden, has led the field of research about these classes of proteins for more than 45 years, continuously building upon his sequence determination of Escherichia coli thioredoxin in the late 1960s and discovery of the thioredoxin fold in the 1970s. He discovered and named glutaredoxin and he determined the structure and function of several members of these glutathione-dependent disulfide oxidoreductases. He still continues to broaden the frontiers of knowledge of thioredoxin and glutaredoxin systems. The thioredoxin fold is today recognized as one of the most common protein folds and the intriguing complexity of redox systems, redox signaling, and redox control of cellular function is constantly increasing. The legacy of Dr. Holmgren's research is therefore highly relevant and important also in the context of present science. In a tribute to his work, questions need to be addressed toward the physiological importance of redox signaling and the impact of glutaredoxin and thioredoxin systems on health and disease. Dr. Holmgren helped lay the foundation for the redox biology field and opened new vistas in the process. He is truly a redox pioneer.
  •  
2.
  • Locy, Morgan L, et al. (författare)
  • Thioredoxin reductase inhibition elicits Nrf2-mediated responses in Clara cells : implications for oxidant-induced lung injury
  • 2012
  • Ingår i: Antioxidants and Redox Signaling. - Stockholm : Karolinska Institutet, Dept of Medical Biochemistry and Biophysics. - 1557-7716 .- 1523-0864.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Pulmonary oxygen toxicity contributes to lung injury in newborn and adult humans.We previously reported that thioredoxin reductase (TrxR1) inhibition with aurothioglucose (ATG) attenuates hyperoxic lung injury in adult mice. The present studies tested the hypothesis that TrxR1 inhibition protects against the effects of hyperoxia via nuclear factor E2-related factor 2 (Nrf2)-dependent mechanisms. Results: Both pharmacologic and siRNA-mediated TrxR1 inhibition induced robust Nrf2 responses in murine-transformed Clara cells (mtCC). While TrxR1 inhibition did not alter the susceptibility of cells to the effects of hyperoxia, glutathione (GSH) depletion after TrxR1 inhibition markedly enhanced the hyperoxic susceptibility of cultured mtCCs. Finally, in vivo data revealed dose-dependent increases in the expression of the Nrf2 target gene NADPH:quinone oxidoreductase 1 (NQO1) in the lungs of ATGtreated adult mice. Innovation: TrxR1 inhibition activates Nrf2-dependent antioxidant responses in mtCCs in vitro and in adult murine lungs in vivo, providing a plausible mechanism for the protective effects of TrxR1 inhibition in vivo. Conclusion: GSH-dependent enzyme systems in mtCCs may be of greater importance for protection against hyperoxic exposure than are TrxR-dependent systems. The induction of Nrf2 activation via TrxR1 inhibition represents a novel therapeutic strategy that attenuates oxidant-mediated lung injury. Similar expression levels of TrxR1 in newborn and adult mouse or human lungs broaden the potential clinical applicability of the present findings to both neonatal and adult oxidant lung injury.
  •  
3.
  • Aboye, Teshome Leta, et al. (författare)
  • Interlocking disulfides in circular proteins : toward efficient oxidative folding of cyclotides.
  • 2011
  • Ingår i: Antioxidants and Redox Signaling. - : Mary Ann Liebert Inc. - 1523-0864 .- 1557-7716. ; 14:1, s. 77-86
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyclotides are ultrastable plant proteins characterized by the presence of a cyclic amide backbone and three disulfide bonds that form a cystine knot. Because of their extreme stability, there has been significant interest in developing these molecules as a drug design scaffold. For this potential to be realized, efficient methods for the synthesis and oxidative folding of cyclotides need to be developed, yet we currently have only a basic understanding of the folding mechanism and the factors influencing this process. In this study, we determine the major factors influencing oxidative folding of the different subfamilies of cyclotides. The folding of all the cyclotides examined was heavily influenced by the concentration of redox reagents, with the folding rate and final yield of the native isomer greatly enhanced by high concentrations of oxidized glutathione. Addition of hydrophobic solvents to the buffer also enhanced the folding rates and appeared to alter the folding pathway. Significant deamidation and isoaspartate formation were seen when oxidation conditions were conducive to slow folding. The identification of factors that influence the folding and degradation pathways of cyclotides will facilitate the development of folding screens and optimized conditions for producing cyclotides and grafted analogs as stable peptide-based therapeutics.
  •  
4.
  •  
5.
  •  
6.
  • Barregård, Lars, 1948, et al. (författare)
  • Human and Methodological Sources of Variability in the Measurement of Urinary 8-Oxo-7,8-dihydro-2 '-deoxyguanosine
  • 2013
  • Ingår i: Antioxidants and Redox Signaling. - : Mary Ann Liebert Inc. - 1523-0864 .- 1557-7716. ; 18:18, s. 2377-2391
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) is a widely used biomarker of oxidative stress. However, variability between chromatographic and ELISA methods hampers interpretation of data, and this variability may increase should urine composition differ between individuals, leading to assay interference. Furthermore, optimal urine sampling conditions are not well defined. We performed inter-laboratory comparisons of 8-oxodG measurement between mass spectrometric-, electrochemical- and ELISA-based methods, using common within-technique calibrants to analyze 8-oxodG-spiked phosphate-buffered saline and urine samples. We also investigated human subject- and sample collection-related variables, as potential sources of variability. Results: Chromatographic assays showed high agreement across urines from different subjects, whereas ELISAs showed far more inter-laboratory variation and generally overestimated levels, compared to the chromatographic assays. Excretion rates in timed 'spot' samples showed strong correlations with 24 h excretion (the 'gold' standard) of urinary 8-oxodG (r(p) 0.67-0.90), although the associations were weaker for 8-oxodG adjusted for creatinine or specific gravity (SG). The within-individual excretion of 8-oxodG varied only moderately between days (CV 17% for 24 h excretion and 20% for first void, creatinine-corrected samples). Innovation: This is the first comprehensive study of both human and methodological factors influencing 8-oxodG measurement, providing key information for future studies with this important biomarker. Conclusion: ELISA variability is greater than chromatographic assay variability, and cannot determine absolute levels of 8-oxodG. Use of standardized calibrants greatly improves intra-technique agreement and, for the chromatographic assays, importantly allows integration of results for pooled analyses. If 24 h samples are not feasible, creatinine- or SG-adjusted first morning samples are recommended.
  •  
7.
  • Basu, Samar, et al. (författare)
  • Eicosanoids and Adipokines in Breast Cancer : From Molecular Mechanisms to Clinical Considerations
  • 2013
  • Ingår i: Antioxidants and Redox Signaling. - : Mary Ann Liebert Inc. - 1523-0864 .- 1557-7716. ; 18:3, s. 323-360
  • Forskningsöversikt (refereegranskat)abstract
    • Chronic inflammation is one of the foremost risk factors for different types of malignancies, including breast cancer. Additional risk factors of this pathology in postmenopausal women are weight gain, obesity, estrogen secretion, and an imbalance in the production of adipokines, such as leptin and adiponectin. Various signaling products of transcription factor, nuclear factor-kappaB, in particular inflammatory eicosanoids, reactive oxygen species (ROS), and cytokines, are thought to be involved in chronic inflammation-induced cancer. Together, these key components have an influence on inflammatory reactions in malignant tissue damage when their levels are deregulated endogenously. Prostaglandins (PGs) are well recognized in inflammation and cancer, and they are solely biosynthesized through cyclooxygenases (COXs) from arachidonic acid. Concurrently, ROS give rise to bioactive isoprostanes from arachidonic acid precursors that are also involved in acute and chronic inflammation, but their specific characteristics in breast cancer are less demonstrated. Higher aromatase activity, a cytochrome P-450 enzyme, is intimately connected to tumor growth in the breast through estrogen synthesis, and is interrelated to COXs that catalyze the formation of both inflammatory and anti-inflammatory PGs such as PGE(2), PGF(2 alpha), PGD(2), and PGJ(2) synchronously under the influence of specific mediators and downstream enzymes. Some of the latter compounds upsurge the intracellular cyclic adenosine monophosphate concentration and appear to be associated with estrogen synthesis. This review discusses the role of COX- and ROS-catalyzed eicosanoids and adipokines in breast cancer, and therefore ranges from their molecular mechanisms to clinical aspects to understand the impact of inflammation.
  •  
8.
  • Brnjic, Slavica, et al. (författare)
  • Induction of Tumor Cell Apoptosis by a Proteasome Deubiquitinase Inhibitor Is Associated with Oxidative Stress
  • 2014
  • Ingår i: Antioxidants and Redox Signaling. - : Mary Ann Liebert Inc. - 1523-0864 .- 1557-7716. ; 21:17, s. 2271-2285
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: b-AP15 is a recently described inhibitor of the USP14/UCHL5 deubiquitinases (DUBs) of the 19S proteasome. Exposure to b-AP15 results in blocking of proteasome function and accumulation of polyubiquitinated protein substrates in cells. This novel mechanism of proteasome inhibition may potentially be exploited for cancer therapy, in particular for treatment of malignancies resistant to currently used proteasome inhibitors. The aim of the present study was to characterize the cellular response to b-AP15-mediated proteasome DUB inhibition. Results: We report that b-AP15 elicits a similar, but yet distinct, cellular response as the clinically used proteasome inhibitor bortezomib. b-AP15 induces a rapid apoptotic response, associated with enhanced induction of oxidative stress and rapid activation of Jun-N-terminal kinase 1/2 (JNK)/activating protein-1 signaling. Scavenging of reactive oxygen species and pharmacological inhibition of JNK reduced b-AP15-induced apoptosis. We further report that endoplasmic reticulum (ER) stress is induced by b-AP15 and is involved in apoptosis induction. In contrast to bortezomib, ER stress is associated with induction of alpha-subunit of eukaryotic initiation factor 2 phosphorylation. Innovation: The findings establish that different modes of proteasome inhibition result in distinct cellular responses, a finding of potential therapeutic importance. Conclusion: Our data show that enhanced oxidative stress and ER stress are major determinants of the strong apoptotic response elicited by the 19S DUB inhibitor b-AP15. Antioxid. Redox Signal. 21, 2271-2285.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 47

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy