SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1523 5866 OR L773:1522 8517 srt2:(2020-2024)"

Sökning: L773:1523 5866 OR L773:1522 8517 > (2020-2024)

  • Resultat 1-10 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almstedt, Elin, et al. (författare)
  • Real-time evaluation of glioblastoma growth in patient-specific zebrafish xenografts
  • 2021
  • Ingår i: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 24:5, s. 726-738
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Patient-derived xenograft (PDX) models of glioblastoma (GBM) are a central tool for neuro-oncology research and drug development, enabling the detection of patient-specific differences in growth, and in vivo drug response. However, existing PDX models are not well suited for large-scale or automated studies. Thus, here, we investigate if a fast zebrafish-based PDX model, supported by longitudinal, AI-driven image analysis, can recapitulate key aspects of glioblastoma growth and enable case-comparative drug testing.Methods: We engrafted 11 GFP-tagged patient-derived GBM IDH wild-type cell cultures (PDCs) into 1-day-old zebrafish embryos, and monitored fish with 96-well live microscopy and convolutional neural network analysis. Using light-sheet imaging of whole embryos, we analyzed further the invasive growth of tumor cells.Results: Our pipeline enables automatic and robust longitudinal observation of tumor growth and survival of individual fish. The 11 PDCs expressed growth, invasion and survival heterogeneity, and tumor initiation correlated strongly with matched mouse PDX counterparts (Spearman R = 0.89, p < 0.001). Three PDCs showed a high degree of association between grafted tumor cells and host blood vessels, suggesting a perivascular invasion phenotype. In vivo evaluation of the drug marizomib, currently in clinical trials for GBM, showed an effect on fish survival corresponding to PDC in vitro and in vivo marizomib sensitivity.Conclusions: Zebrafish xenografts of GBM, monitored by AI methods in an automated process, present a scalable alternative to mouse xenograft models for the study of glioblastoma tumor initiation, growth, and invasion, applicable to patient-specific drug evaluation.
  •  
2.
  • Björkblom, Benny, et al. (författare)
  • Distinct metabolic hallmarks of WHO classified adult glioma subtypes
  • 2022
  • Ingår i: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 24:9, s. 1454-1468
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Gliomas are complex tumors with several genetic aberrations and diverse metabolic programs contributing to their aggressive phenotypes and poor prognoses. This study defines key metabolic features that can be used to differentiate between glioma subtypes, with potential for improved diagnostics and subtype targeted therapy.METHODS: Cross-platform global metabolomic profiling coupled with clinical, genetic, and pathological analysis of glioma tissue from 224 tumors - oligodendroglioma (n=31), astrocytoma (n=31) and glioblastoma (n=162) - were performed. Identified metabolic phenotypes were evaluated in accordance with the WHO classification, IDH-mutation, 1p/19q-codeletion, WHO-grading 2-4, and MGMT promoter methylation.RESULTS: Distinct metabolic phenotypes separate all six analyzed glioma subtypes. IDH-mutated subtypes, expressing 2-hydroxyglutaric acid, were clearly distinguished from IDH-wildtype subtypes. Considerable metabolic heterogeneity outside of the mutated IDH pathway were also evident, with key metabolites being high expression of glycerophosphates, inositols, monosaccharides and sugar alcohols and low levels of sphingosine and lysoglycerophospholipids in IDH-mutants. Among the IDH-mutated subtypes, we observed high levels of amino acids, especially glycine and 2-aminoadipic acid, in grade 4 glioma, and N-acetyl aspartic acid in low-grade astrocytoma and oligodendroglioma. Both IDH-wildtype and mutated oligodendroglioma and glioblastoma were characterized by high levels of acylcarnitines, likely driven by rapid cell growth and hypoxic features. We found elevated levels of 5-HIAA in gliosarcoma and a subtype of oligodendroglioma not yet defined as a specific entity, indicating a previously not described role for the serotonin pathway linked to glioma with bimorphic tissue.CONCLUSION: Key metabolic differences exist across adult glioma subtypes.
  •  
3.
  • Coomans, Marijke, et al. (författare)
  • Factors associated with health-related quality of life (HRQoL) deterioration in glioma patients during the progression-free survival period
  • 2022
  • Ingår i: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 24:12, s. 2159-2169
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Maintenance of functioning and well-being during the progression-free survival (PFS) period is important for glioma patients. This study aimed to determine whether health-related quality of life (HRQoL) can be maintained during progression-free time, and factors associated with HRQoL deterioration in this period. Methods We included longitudinal HRQoL data from previously published clinical trials in glioma. The percentage of patients with stable HRQoL until progression was determined per scale and at the individual patient level (i.e. considering all scales simultaneously). We assessed time to a clinically relevant deterioration in HRQoL, expressed in deterioration-free survival and time-to-deterioration (the first including progression as an event). We also determined the association between sociodemographic and clinical factors and HRQoL deterioration in the progression-free period. Results Five thousand five hundred and thirty-nine patients with at least baseline HRQoL scores had a median time from randomization to progression of 7.6 months. Between 9-29% of the patients deteriorated before disease progression on the evaluated HRQoL scales. When considering all scales simultaneously, 47% of patients deteriorated on >= 1 scale. Median deterioration-free survival period ranged between 3.8-5.4 months, and median time-to-deterioration between 8.2-11.9 months. For most scales, only poor performance status was independently associated with clinically relevant HRQoL deterioration in the progression-free period. Conclusions HRQoL was maintained in only 53% of patients in their progression-free period, and treatment was not independently associated with this deterioration in HRQoL. Routine monitoring of the patients functioning and well-being during the entire disease course is therefore important, so that interventions can be initiated when problems are signaled.
  •  
4.
  • Foss-Skiftesvik, Jon, et al. (författare)
  • Multi-ancestry genome-wide association study of 4069 children with glioma identifies 9p21.3 risk locus
  • 2023
  • Ingår i: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 25:9, s. 1709-1720
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Although recent sequencing studies have revealed that 10% of childhood gliomas are caused by rare germline mutations, the role of common variants is undetermined and no genome-wide significant risk loci for pediatric central nervous system tumors have been identified to date.METHODS: Meta-analysis of 3 population-based genome-wide association studies comprising 4069 children with glioma and 8778 controls of multiple genetic ancestries. Replication was performed in a separate case-control cohort. Quantitative trait loci analyses and a transcriptome-wide association study were conducted to assess possible links with brain tissue expression across 18 628 genes.RESULTS: Common variants in CDKN2B-AS1 at 9p21.3 were significantly associated with astrocytoma, the most common subtype of glioma in children (rs573687, P-value of 6.974e-10, OR 1.273, 95% CI 1.179-1.374). The association was driven by low-grade astrocytoma (P-value of 3.815e-9) and exhibited unidirectional effects across all 6 genetic ancestries. For glioma overall, the association approached genome-wide significance (rs3731239, P-value of 5.411e-8), while no significant association was observed for high-grade tumors. Predicted decreased brain tissue expression of CDKN2B was significantly associated with astrocytoma (P-value of 8.090e-8).CONCLUSIONS: In this population-based genome-wide association study meta-analysis, we identify and replicate 9p21.3 (CDKN2B-AS1) as a risk locus for childhood astrocytoma, thereby establishing the first genome-wide significant evidence of common variant predisposition in pediatric neuro-oncology. We furthermore provide a functional basis for the association by showing a possible link to decreased brain tissue CDKN2B expression and substantiate that genetic susceptibility differs between low- and high-grade astrocytoma.
  •  
5.
  • Hoang-Xuan, Khê, et al. (författare)
  • European Association of Neuro-Oncology (EANO) guidelines for treatment of primary central nervous system lymphoma (PCNSL)
  • 2023
  • Ingår i: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 25:1, s. 37-53
  • Tidskriftsartikel (refereegranskat)abstract
    • The management of primary central nervous system (PCNSL) is one of the most controversial topics in neuro-oncology because of the complexity of the disease and the limited number of controlled studies available. In 2021, given recent advances and the publication of practice-changing randomized trials, the European Association of Neuro-Oncology (EANO) created a multidisciplinary task force to update the previously published evidence-based guidelines for immunocompetent adult patients with PCNSL and added a section on immunosuppressed patients. The guideline provides consensus considerations and recommendations for the treatment of PCNSL, including intraocular manifestations and specific management of the elderly. The main changes from the previous guideline include strengthened evidence for the consolidation with ASCT in first-line treatment, prospectively assessed chemotherapy combinations for both young and elderly patients, clarification of the role of rituximab even though the data remain inconclusive, of the role of new agents, and the incorporation of immunosuppressed patients and primary ocular lymphoma. The guideline should aid the clinicians in everyday practice and decision making and serve as a basis for future research in the field.
  •  
6.
  • Huang, Hua, 1986-, et al. (författare)
  • ELTD1-deletion reduces vascular abnormality and improves T-cell recruitment after PD-1 blockade in glioma.
  • 2021
  • Ingår i: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 24:3, s. 398-411
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Tumor vessels in glioma are molecularly and functionally abnormal, contributing to treatment resistance. Proteins differentially expressed in glioma vessels can change vessel phenotype and be targeted for therapy. ELTD1 (Adgrl4) is an orphan member of the adhesion G-protein-coupled receptor family upregulated in glioma vessels, and has been suggested as a potential therapeutic target. However, the role of ELTD1 in regulating vessel function in glioblastoma is poorly understood.METHODS: ELTD1 expression in human gliomas and its association with patient survival was determined using tissue microarrays and public databases. The role of ELTD1 in regulating tumor vessel phenotype was analyzed using orthotopic glioma models and ELTD1 -/- mice. Endothelial cells isolated from murine gliomas were transcriptionally profiled to determine differentially expressed genes and pathways. The consequence of ELTD1-deletion on glioma immunity was determined by treating tumor bearing mice with PD-1-blocking antibodies.RESULTS: ELTD1 levels were upregulated in human glioma vessels, increased with tumor malignancy, and were associated with poor patient survival. Progression of orthotopic gliomas was not affected by ELTD1-deletion, however, tumor vascular function was improved in ELTD1 -/- mice. Bioinformatic analysis of differentially expressed genes indicated increased inflammatory response and decreased proliferation in tumor endothelium in ELTD1 -/- mice. Consistent with an enhanced inflammatory response, ELTD1-deletion improved T-cell infiltration in GL261-bearing mice after PD-1 checkpoint blockade.CONCLUSION: Our data demonstrate that ELTD1 participates in inducing vascular dysfunction in glioma, and suggests that targeting of ELTD1 may normalize the vessels and improve the response to immunotherapy.
  •  
7.
  • Liu, I, et al. (författare)
  • EARLY GABAERGIC NEURONAL LINEAGE DEFINES DEPENDENCIES IN HISTONE H3 G34R/V GLIOMA
  • 2021
  • Ingår i: NEURO-ONCOLOGY. - : Oxford University Press (OUP). - 1522-8517 .- 1523-5866. ; 23, s. 18-18
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • High-grade gliomas harboring H3 G34R/V mutations exclusively occur in the cerebral hemispheres of adolescents and young adults, suggesting a distinct neurodevelopmental origin. Combining multimodal bulk and single-cell genomics with unbiased genome-scale CRISPR/Cas9 approaches, we here describe a GABAergic interneuron progenitor lineage as the most likely context from which these H3 G34R/V mutations drive gliomagenesis, conferring unique and tumor-selective gene targets essential for glioma cell survival, as validated genetically and pharmacologically. Phenotypically, we demonstrate that while H3 G34R/V glioma cells harbor the neurotransmitter GABA, they are developmentally stalled, and do not induce the neuronal hyperexcitability described in other glioma subtypes. These findings offer a striking counter-example to the prevailing view of glioma origins in glial precursor cells, resulting in distinct cellular, microenvironmental, and therapeutic consequences.
  •  
8.
  • Mainwaring, O, et al. (författare)
  • MYC BUT NOT MYCN GENERATES AGGRESSIVE GROUP 3 MEDULLOBLASTOMA BY ARF PATHWAY SUPPRESSION
  • 2021
  • Ingår i: NEURO-ONCOLOGY. - : Oxford University Press (OUP). - 1522-8517 .- 1523-5866. ; 23, s. 7-7
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Medulloblastoma (MB), the most common malignant pediatric brain tumor, often harbor MYC amplifications and arise in the presence of a functional p53 suppressor protein. To elucidate the mechanism behind this inexplicable tumor development we generated an inducible, immunocompetent transgenic mouse model of MYC-driven MB. Tumors driven from the glutamate transporter promoter molecularly resembled aggressive Group 3 MB driven by an enriched photoreceptor program. They developed embryonically in a monoclonal fashion in the presence of a functional unmutated p53 gene. Compared to MYCN-expressing MB driven from the same promoter, we discovered pronounced silencing of the ARF suppressor upstream of p53. We similarly found significant methylation of the ARF promoter in MYC-amplified as compared to MYCN-amplified human MB samples. While MYCN-driven tumor malignancy was more sensitive to ARF depletion, it dramatically increased metastatic spread of MYC-driven tumors. DNMT inhibition could restore ARF levels in MYC-expressing tumors but did not show any therapeutic advantage in tumors in vivo. Computational modeling suggested the HSP90 protein to act as a more specific target and ARF could indeed be restored by the HSP90 inhibitor onalespib that promoted increased survival in our inducible animal model suggesting that HSP90 inhibition could be potentially used in patients affected by MYC-driven ARF-silenced cancer.
  •  
9.
  • Ostrom, Quinn T., et al. (författare)
  • Partitioned glioma heritability shows subtype-specific enrichment in immune cells
  • 2021
  • Ingår i: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 23:8, s. 1304-1314
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Epidemiological studies of adult glioma have identified genetic syndromes and 25 heritable risk loci that modify individual risk for glioma, as well increased risk in association with exposure to ionizing radiation and decreased risk in association with allergies. In this analysis, we assess whether there is a shared genome-wide genetic architecture between glioma and atopic/autoimmune diseases.Methods: Using summary statistics from a glioma genome-wide association studies (GWAS) meta-analysis, we identified significant enrichment for risk variants associated with gene expression changes in immune cell populations. We also estimated genetic correlations between glioma and autoimmune, atopic, and hematologic traits using linkage disequilibrium score regression (LDSC), which leverages genome-wide single-nucleotide polymorphism (SNP) associations and patterns of linkage disequilibrium.Results: Nominally significant negative correlations were observed for glioblastoma (GB) and primary biliary cirrhosis (rg = -0.26, P =. 0228), and for non-GB gliomas and celiac disease (rg = -0.32, P =. 0109). Our analyses implicate dendritic cells (GB pHM = 0.0306 and non-GB pHM = 0.0186) in mediating both GB and non-GB genetic predisposition, with GB-specific associations identified in natural killer (NK) cells (pHM = 0.0201) and stem cells (pHM = 0.0265).Conclusions: This analysis identifies putative new associations between glioma and autoimmune conditions with genomic architecture that is inversely correlated with that of glioma and that T cells, NK cells, and myeloid cells are involved in mediating glioma predisposition. This provides further evidence that increased activation of the acquired immune system may modify individual susceptibility to glioma.
  •  
10.
  • Remes, Tiina Maria, et al. (författare)
  • Radiotherapy-induced vascular cognitive impairment 20 years after childhood brain tumor
  • 2024
  • Ingår i: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 26:2, s. 362-373
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Studies have established that radiotherapy for childhood brain tumors (BTs) increases the risk of cerebrovascular disease (CVD); however, it is unclear how this will affect cognitive function. This study aimed to investigate the associations between radiotherapy-induced CVD, white matter hyperintensities (WMHs), and neurocognitive outcomes in adult survivors of childhood BTs.Methods: In a cross-sectional setting, we conducted a national cohort that included 68 radiotherapy-treated survivors of childhood BTs after a median follow-up of 20 years. Markers of CVD and WMHs were evaluated using brain MRI, and the sum of CVD-related findings was calculated. Additionally, the associations among CVD findings, WMHs, and neuropsychological test results were analyzed.Results: Of the 68 childhood BT survivors, 54 (79%) were diagnosed with CVD and/or WMHs at a median age of 27 years. CVD and/or WMHs were associated with lower scores for verbal intelligence quotient, performance intelligence quotient (PIQ), executive function, memory, and visuospatial ability (P < .05). Additionally, survivors with microbleeds had greater impairments in the PIQ, processing speed, executive function, and visuospatial ability (P < .05). WMHs and CVD burden were associated with greater difficulties in memory function and visuospatial ability (P < .05). Small-vessel disease burden was associated with PIQ scores, processing speed, working memory, and visuospatial ability.Conclusions: The study results suggest that markers of radiotherapy-induced CVD, the additive effect of CVD markers, and risk factors of dementia are associated with cognitive impairment, which may suggest that the survivors are at a high risk of developing early-onset dementia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 42

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy