SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1531 2267 OR L773:1094 8341 srt2:(2020-2023)"

Sökning: L773:1531 2267 OR L773:1094 8341 > (2020-2023)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mohamad Salleh, Suraya Binti (författare)
  • Gene coexpression network analysis reveals perirenal adipose tissue as an important target of prenatal malnutrition in sheep
  • 2023
  • Ingår i: Physiological Genomics. - 1094-8341 .- 1531-2267. ; 55, s. 392-413
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously demonstrated that pre- and early postnatal malnutrition in sheep induced depot- and sex-specific changes in adipose morphological features, metabolic outcomes, and transcriptome in adulthood, with perirenal (PER) as the major target followed by subcutaneous (SUB) adipose tissue. We aimed to identify coexpressed and hub genes in SUB and PER to identify the underlying molecular mechanisms contributing to the early nutritional programming of adipose-related phenotypic outcomes. Transcriptomes of SUB and PER of male and female adult sheep with different pre- and early postnatal nutrition histories were used to construct networks of coexpressed genes likely to be functionally associated with pre- and early postnatal nutrition histories and phenotypic traits using weighted gene coexpression network analysis. The modules from PER showed enrichment of cell cycle regulation, gene expression, transmembrane transport, and metabolic processes associated with both sexes' prenatal nutrition. In SUB (only males), a module of enriched adenosine diphosphate metabolism and development correlated with prenatal nutrition. Sex-specific module enrichments were found in PER, such as chromatin modification in the male network but histone modification and mitochondria- and oxidative phosphorylation-related functions in the female network. These sex-specific modules correlated with prenatal nutrition and adipocyte size distribution patterns. Our results point to PER as a primary target of prenatal malnutrition compared to SUB, which played only a minor role. The prenatal programming of gene expression and cell cycle, potentially through epigenetic modifications, might be underlying mechanisms responsible for observed changes in PER expandability and adipocyte-size distribution patterns in adulthood in both sexes.
  •  
2.
  • Sæther, JC, et al. (författare)
  • Small LDL subfractions are associated with coronary atherosclerosis despite no differences in conventional lipids
  • 2023
  • Ingår i: Physiological genomics. - : American Physiological Society. - 1531-2267 .- 1094-8341. ; 55:1, s. 16-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipoprotein subfractions currently represent a new source of cardiovascular disease (CVD) risk markers that may provide more information than conventional lipid measures. We aimed to investigate whether lipoprotein subfractions are associated with coronary atherosclerosis in patients without prior known CVD. Fasting serum samples from 60 patients with suspected coronary artery disease (CAD) were collected before coronary angiography and analyzed by nuclear magnetic resonance (NMR) spectroscopy. The severity of coronary atherosclerosis was quantified by the Gensini score (≤20.5 = nonsignificant coronary atherosclerosis, 20.6–30.0 = intermediate coronary atherosclerosis, ≥30.1 = significant CAD). Differences in lipoprotein subfractions between the three Gensini groups were assessed by two-way ANOVA, adjusted for statin use. Despite no differences in conventional lipid measures between the three Gensini groups, patients with significant CAD had higher apolipoprotein-B/apolipoprotein-A1 ratio, 30% more small and dense low-density lipoprotein 5 (LDL-5) particles, and increased levels of cholesterol, triglycerides, and phospholipids within LDL-5 compared with patients with nonsignificant coronary atherosclerosis and intermediate coronary atherosclerosis ( P ≤ 0.001). In addition, the low-density lipoprotein (LDL) cholesterol/high-density lipoprotein cholesterol ratio, and triglyceride levels of LDL 4 were significantly increased in patients with significant CAD compared with patients with nonsignificant coronary atherosclerosis. In conclusion, small and dense lipoprotein subfractions were associated with coronary atherosclerosis in patients without prior CVD. Additional studies are needed to explore whether lipoprotein subfractions may represent biomarkers offering a clinically meaningful improvement in the risk prediction of CAD.
  •  
3.
  • Synnergren, Jane, et al. (författare)
  • Transcriptional sex and regional differences in paired human atrial and ventricular cardiac biopsies collected in vivo
  • 2020
  • Ingår i: Physiological Genomics. - : American Physiological Society. - 1094-8341 .- 1531-2267. ; 52:2, s. 110-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcriptional studies of the human heart provide insight into physiological and pathophysiological mechanisms, essential for understanding the fundamental mechanisms of normal cardiac function and how they are altered by disease. To improve the understanding of why men and women may respond differently to the same therapeutic treatment it is crucial to learn more about sex-specific transcriptional differences. In this study the transcriptome of right atrium and left ventricle was compared across sex and regional location. Paired biopsies from five male and five female patients undergoing aortic valve replacement or coronary artery bypass grafting were included. Gene expression analysis identified 620 differentially expressed transcripts in atrial and ventricular tissue in men and 471 differentially expressed transcripts in women. In total 339 of these transcripts overlapped across sex but notably, 281 were unique in the male tissue and 162 in the female tissue, displaying marked sex differences in the transcriptional machinery. The transcriptional activity was significantly higher in atrias than in ventricles as 70% of the differentially expressed genes were upregulated in the atrial tissue. Furthermore, pathway- and functional annotation analyses performed on the differentially expressed genes showed enrichment for a more heterogeneous composition of biological processes in atrial compared with the ventricular tissue, and a dominance of differentially expressed genes associated with infection disease was observed. The results reported here provide increased insights about transcriptional differences between the cardiac atrium and ventricle but also reveal transcriptional differences in the human heart that can be attributed to sex.
  •  
4.
  • Uvnäs-Moberg, Kerstin (författare)
  • Oxytocin's anti-inflammatory and proimmune functions in COVID-19: a transcriptomic signature-based approach
  • 2020
  • Ingår i: Physiological Genomics. - : American Physiological Society. - 1094-8341 .- 1531-2267. ; 52, s. 401-407
  • Tidskriftsartikel (refereegranskat)abstract
    • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic, infecting over 16 million people worldwide with a significant mortality rate. However, there is no current Food and Drug Administration-approved drug that treats coronavirus disease 2019 (COVID-19). Damage to T lymphocytes along with the cytokine storm are important factors that lead to exacerbation of clinical cases. Here, we are proposing intravenous oxytocin (OXT) as a candidate for adjunctive therapy for COVID-19. OXT has antiinflammatory and proimmune adaptive functions. Using the Library of Integrated Network-Based Cellular Signatures (LINCS), we used the transcriptomic signature for carbetocin, an OXT agonist, and compared it to gene knockdown signatures of inflammatory (such as interleukin IL-1 beta and IL-6) and proimmune markers (including T cell and macrophage cell markers like CD40 and ARG1). We found that carbetocin's transcriptomic signature has a pattern of concordance with inflammation and immune marker knockdown signatures that are consistent with reduction of inflammation and promotion and sustaining of immune response. This suggests that carbetocin may have potent effects in modulating inflammation, attenuating T cell inhibition, and enhancing T cell activation. Our results also suggest that carbetocin is more effective at inducing immune cell responses than either lopinavir or hydroxychloroquine, both of which have been explored for the treatment of COVID-19.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy