SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1557 9042 OR L773:0897 7151 srt2:(2000-2004)"

Search: L773:1557 9042 OR L773:0897 7151 > (2000-2004)

  • Result 1-10 of 25
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Bentzer, Peter, et al. (author)
  • Infusion of prostacyclin following experimental brain injury in the rat reduces cortical lesion volume
  • 2001
  • In: Journal of Neurotrauma. - : Mary Ann Liebert Inc. - 1557-9042 .- 0897-7151. ; 18:3, s. 275-285
  • Journal article (peer-reviewed)abstract
    • Endothelial-derived prostacyclin is an important regulator of microvascular function, and its main actions are inhibition of platelet/leukocyte aggregation and adhesion, and vasodilation. Disturbances in endothelial integrity following traumatic brain injury (TBI) may result in insufficient prostacyclin production and participate in the pathophysiological sequelae of brain injury. The objective of this study was to evaluate the potential therapeutic effects of a low-dose prostacyclin infusion on cortical lesion volume, CA3 neuron survival and functional outcome following TBI in the rat. Anesthetized animals (sodium pentobarbital, 60 mg/kg, i.p.) were subjected to a lateral fluid percussion brain injury (2.5 atm) or sham injury. Following TBI, animals were randomized to receive a constant infusion of either prostacyclin (1 ng/kg x min(-1) i.v.) or vehicle over 48 h. All sham animals received vehicle (n = 6). Evaluation of neuromotor function, lesion volume, and CA3 neuronal loss was performed blindly. By 7 days postinjury, cortical lesion volume was significantly reduced by 43% in the prostacyclin-treated group as compared to the vehicle treated group (p < 0.01; n = 12 prostacyclin, n = 12 vehicle). No differences were observed in neuromotor function (48 h and 7 days following TBI), or in hippocampal cell loss (7 days following TBI) between the prostacyclin- and vehicle-treated groups. We conclude that prostacyclin in a low dose reduces loss of neocortical neurons following TBI and may be a potential clinical therapeutic agent to reduce neuronal cell death associated with brain trauma.
  •  
4.
  • Bentzer, Peter, et al. (author)
  • Low-Dose Prostacyclin Improves Cortical Perfusion following Experimental Brain Injury in the Rat.
  • 2003
  • In: Journal of Neurotrauma. - : Mary Ann Liebert Inc. - 1557-9042 .- 0897-7151. ; 20:5, s. 447-461
  • Journal article (peer-reviewed)abstract
    • It was recently shown that prostacyclin at a low dose reduces cortical cell death following brain trauma in the rat. Conceivably, prostacyclin with its vasodilatory, anti-aggregatory, anti-adhesive and permeability-reducing properties improved a compromised perfusion caused by post-traumatic vasoconstriction, microthrombosis and increased microvascular permeability. The objective of the present study was therefore to investigate the hemodynamic effects of low-dose prostacyclin in the traumatized rat cortex. Following a fluid percussion brain injury or a sham procedure, animals were treated with a continuous intravenous infusion of prostacyclin of 1 or 2 ng x kg(-1) x min(-1), or vehicle. Blood flow ([(14)C]-iodoantipyrine), the permeability-surface area product (PS) for [(51)Cr]-EDTA, and brain water content were measured after 3 or 48 h of treatment. Blood flow values in the injured cortex were transiently reduced to 0.42 +/- 0.2 mL x min(-1) in the vehicle group 3 h following trauma from a corresponding value of about 1.6 mL x min(-1) in the sham group, with recovery of blood flow after 48 h. Prostacyclin treatment caused a dose-dependent increase in blood flow which reached statistical significance 48 h following trauma. Brain water content and PS increased in the injured cortex post trauma and the higher dose of prostacyclin increased these parameters further at 48 h compared to the vehicle group (p < 0.05). The latter effects of prostacyclin cannot be attributed to an increase in permeability, as prostacyclin did not influence PS or brain water content following sham trauma. In fact prostacyclin has been shown to have permeability-decreasing properties. We conclude that prostacyclin improves cortical perfusion following brain trauma. The simultaneous aggravation of brain edema can be explained by an increased surface area, perhaps in combination with increased capillary hydrostatic pressure.
  •  
5.
  • Büki, Andras, 1966-, et al. (author)
  • Preinjury administration of the calpain inhibitor MDL-28170 attenuates traumatically induced axonal injury
  • 2003
  • In: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 20:3, s. 261-268
  • Journal article (peer-reviewed)abstract
    • Traumatic brain injury (TBI) evokes diffuse (traumatic) axonal injury (TAI), which contributes to morbidity and mortality. Damaged axons display progressive alterations gradually evolving to axonal disconnection. In severe TAI, the tensile forces of injury lead to a focal influx of Ca2+, initiating a series of proteolytic processes wherein the cysteine proteases, calpain and caspase modify the axonal cytoskeleton, causing irreversible damage over time postinjury. Although several studies have demonstrated that the systemic administration of calpain inhibitors reduces the extent of ischemic and traumatic contusional injury a direct beneficial effect on TAI has not been established to date. The current study was initiated to address this issue in an impact acceleration rat-TBI model in order to provide further evidence on the contribution of calpain-mediated proteolytic processes in the pathogenesis of TAI, while further supporting the utility of calpain-inhibitors. A single tail vein bolus injection of 30 mg/kg MDL-28170 was administered to Wistar rats 30 min preinjury. After injury the rats were allowed to survive 120 min when they were perfused with aldehydes. Brains were processed for immunohistochemical localization of damaged axonal profiles displaying either amyloid precursor protein (APP)- or RMO-14-immunoreactivity (IR), both considered markers of specific features of TAI. Digital data acquisition and statistical analysis demonstrated that preinjury administration of MDL-28170 significantly reduced the mean number of damaged RMO-14- as well as APP-IR axonal profiles in the brainstem fiber tracts analyzed. These results further underscore the role of calpain-mediated proteolytic processes in the pathogenesis of DAI and support the potential use of cell permeable calpain-inhibitors as a rational therapeutic approach in TBI. 
  •  
6.
  •  
7.
  • Gutierrez, Elena M, 1973- (author)
  • A new model for diffuse brain injury by rotational acceleration: I model, gross appearance, and astrocytosis
  • 2001
  • In: Journal of Neurotrauma. - : Mary Ann Liebert Inc. - 0897-7151 .- 1557-9042. ; 18:3, s. 247-257
  • Journal article (peer-reviewed)abstract
    • Rapid head rotation is a major cause of brain damage in automobile crashes and falls. This report details a new model for rotational acceleration about the center of mass of the rabbit head. This allows the study of brain injury without translational acceleration of the head. Impact from a pneumatic cylinder was transferred to the skull surface to cause a half-sine peak acceleration of 2.1 × 105 rad/s2 and 0.96-ms pulse duration. Extensive subarachnoid hemorrhages and small focal bleedings were observed in the brain tissue. A pronounced reactive astrogliosis was found 8-14 days after trauma, both as networks around the focal hemorrhages and more diffusely in several brain regions. Astrocytosis was prominent in the gray matter of the cerebral cortex, layers II-V, and in the granule cell layer and around the axons of the pyramidal neurons in the hippocampus. The nuclei of cranial nerves, such as the hypoglossal and facial nerves, also showed intense astrocytosis. The new model allows study of brain injuries from head rotation in the absence of translational influences.
  •  
8.
  • Gutierrez Farewik, Elena M, 1973- (author)
  • A new model for diffuse brain injury by rotational acceleration: II. Effects on extracellular glutamate, intracranial pressure, and neuronal apoptosis
  • 2001
  • In: Journal of Neurotrauma. - 0897-7151 .- 1557-9042. ; 18:3, s. 259-73
  • Journal article (peer-reviewed)abstract
    • The aim of this study is to monitor excitatory amino acids (EAAs) in the extracellular fluids of the brain and to characterize regional neuronaldamage in a new experimental model for brain injury, in which rabbits were exposed to 180-260 krad/s2 rotational head acceleration. This loading causes extensive subarachnoid hemorrhage, focal tissue bleeding, reactive astrocytosis, and axonal damage. Animals were monitored for intracranial pressure (ICP) and for amino acids in the extracellular fluids. Immunohistochemistry was used to study expression of the gene c-Jun and apoptosis with the terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) technique. Extracellular glutamate, glycine, and taurine increased significantly in the hippocampus within a few hours and remained high after 24 h. Neuronal nuclei in the granule layers of the hippocampus and cerebellum were positive for c-Jun after 24 h. Little immunoreactivity was detected in the cerebral cortex. c-Jun-positive neuronal perikarya and processes were found in granule and pyramidal CA4 layers of the hippocampus and among the Purkinje cells of the cerebellum. Also some microglial cells stained positively for c-Jun. TUNEL reactivity was most intense at 10 days after trauma and was extensive in neurons of the cerebral cortex, hippocampus, and cerebellum. The initial response of the brain after rotationalhead injury involves brain edema after 24 h and an excitotoxic neuronal microenvironment in the first hour, which leads to extensive delayed neuronal cell death by apoptosis necrosis in the cerebral cortex, hippocampus and cerebellum.
  •  
9.
  • Kleiven, Svein (author)
  • Influence of Impact Direction on the Human Head in Prediction of Subdural Hematoma
  • 2003
  • In: Journal of Neurotrauma. - : Mary Ann Liebert Inc. - 0897-7151 .- 1557-9042. ; 20:4, s. 365-379
  • Journal article (peer-reviewed)abstract
    • The objective of the present study was to analyze the effect of different loading directions following impact, and to evaluate existing global head injury criteria. Detailed and parameterized models of the adult human head were created by using the Finite Element Method (FEM). Loads corresponding to the same impact power were imposed in different directions. Furthermore, the Head Injury Criterion (HIC) and the recently proposed Head Impact Power (HIP) criterion were evaluated with respect to the relative motion between the skull and the brain, as well as the strain in the bridging veins. It was found that the influence of impact direction had a substantial effect on the intracranial response. The largest relative skull-brain motion and strain in the bridging veins occurred with the anterior-posterior (AP) and posterior-anterior (PA) rotational impulses. HIC was unable to predict consequences of a pure rotational impulse while HIP needed individual scaling coefficients for the different terms to account for difference in load direction. When using the proposed scaling procedure, a better prediction of subdural hematoma (SDH) was obtained. It is thus suggested that an evaluation of the synergistic terms is necessary to further improve the injury prediction. These variations should be considered when developing new head injury criteria.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view