SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1558 1497 srt2:(2020-2024)"

Sökning: L773:1558 1497 > (2020-2024)

  • Resultat 1-10 av 62
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allison, Samantha L, et al. (författare)
  • Neurodegeneration, Alzheimer's disease biomarkers, and longitudinal verbal learning and memory performance in late middle age.
  • 2021
  • Ingår i: Neurobiology of aging. - : Elsevier BV. - 1558-1497 .- 0197-4580. ; 102, s. 151-160
  • Tidskriftsartikel (refereegranskat)abstract
    • This study examined the effect of neurodegeneration, and its interaction with Alzheimer's disease (AD) cerebrospinal fluid biomarkers, on longitudinal verbal learning and memory performance in cognitively unimpaired (CU) late middle-aged adults. Three hundred and forty-two CU adults (cognitive baseline mean age=58.4), with cerebrospinal fluid and structural MRI, completed 2-10 (median=5) cognitive assessments. Learning and memory were assessed using the Rey Auditory Verbal Learning Test (RAVLT). We used sequential comparison of nested linear mixed effects models to analyze the data. Model selection preserved a significant ptau181/Aβ42×global atrophy×age interaction; individuals with less global atrophy and lower ptau181/Aβ42 levels had less learning and delayed recall decline than individuals with more global atrophy and/or higher levels of ptau181/Aβ42. The hippocampal volume×age×ptau181/Aβ42 interaction was not significant. Findings suggest that in a sample of CU late middle-aged adults, individuals with AD biomarkers, global atrophy, or both evidence greater verbal learning and memory decline than individuals without either risk factor.
  •  
2.
  • Andersson, Pernilla, 1992-, et al. (författare)
  • The association between control of interference and white-matter integrity : A cross-sectional and longitudinal investigation
  • 2022
  • Ingår i: Neurobiology of Aging. - : Elsevier. - 0197-4580 .- 1558-1497. ; 114, s. 49-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Proactive interference (PI) occurs when old information interferes with newly acquired information and has been suggested as a major cause of forgetting in working memory. In this study, we investigate cross-sectional (N = 267) and longitudinal (N = 148) associations between PI and white-matter integrity (WMI) using diffusion-weighted imaging in an adult life-span sample (25-80 years; Mage = 60.15; 138 female). Older age was related to higher PI and lower WMI. Cross-sectional analyses showed associations between PI and WMI spanning several white-matter tracts as well as globally, suggesting that the age-related decline in PI may be driven primarily by global changes in WMI. Furthermore, longitudinal changes in PI were shown to be negatively correlated with concurrent changes in WMI in the fornix. Mediation analyses showed that WMI mediated the relationship between age and PI only in older adults, indicating that WMI becomes increasingly connected to cognitive functioning with increasing age. This is the first demonstration of WMI decline contributing to the age-related decline in PI.
  •  
3.
  • Avelar-Pereira, Barbara, et al. (författare)
  • Increased functional homotopy of the prefrontal cortex is associated with corpus callosum degeneration and working memory decline
  • 2020
  • Ingår i: Neurobiology of Aging. - : Elsevier. - 0197-4580 .- 1558-1497. ; 96, s. 68-78
  • Tidskriftsartikel (refereegranskat)abstract
    • Functional homotopy reflects the link between spontaneous activity in a voxel and its counterpart in the opposite hemisphere. Alterations in homotopic functional connectivity (FC) are seen in normal aging, with highest and lowest homotopy being present in sensory-motor and higher-order regions, respectively. Homotopic FC relates to underlying structural connections, but its neurobiological underpinnings remain unclear. The genu of the corpus callosum joins symmetrical parts of the prefrontal cortex (PFC) and is susceptible to age-related degeneration, suggesting that PFC homotopic connectivity is linked to changes in white-matter integrity. We investigated homotopic connectivity changes and whether these were associated with white-matter integrity in 338 individuals. In addition, we examined whether PFC homotopic FC was related to changes in the genu over 10 years and working memory over 5 years. There were increases and decreases in functional homotopy, with the former being prevalent in subcortical and frontal regions. Increased PFC homotopic FC was partially driven by structural degeneration and negatively associated with working memory, suggesting that it reflects detrimental age-related changes. (C) 2020 The Author(s). Published by Elsevier Inc.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Betts, Matthew J., et al. (författare)
  • Learning in anticipation of reward and punishment : perspectives across the human lifespan
  • 2020
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 96, s. 49-57
  • Tidskriftsartikel (refereegranskat)abstract
    • Learning to act to receive reward and to withhold to avoid punishment has been found to be easier than learning the opposite contingencies in young adults. To what extent this type of behavioral adaptation might develop during childhood and adolescence and differ during aging remains unclear. We therefore tested 247 healthy individuals across the human life span (7–80 years) with an orthogonalized valenced go/no-go learning task. Computational modeling revealed that peak performance in young adults was attributable to greater sensitivity to both reward and punishment. However, in children and adolescents, we observed an increased bias toward action but not reward sensitivity. By contrast, reduced learning in midlife and older adults was accompanied by decreased reward sensitivity and especially punishment sensitivity along with an age-related increase in the Pavlovian bias. These findings reveal distinct motivation-dependent learning capabilities across the human life span, which cannot be probed using conventional go/reward no-go/punishment style paradigms that have important implications in lifelong education.
  •  
9.
  • Brusini, Irene, et al. (författare)
  • MRI-derived brain age as a biomarker of ageing in rats : validation using a healthy lifestyle intervention
  • 2022
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 109, s. 204-215
  • Tidskriftsartikel (refereegranskat)abstract
    • The difference between brain age predicted from MRI and chronological age (the so-called BrainAGE) has been proposed as an ageing biomarker. We analyse its cross-species potential by testing it on rats undergoing an ageing modulation intervention. Our rat brain age prediction model combined Gaussian process regression with a classifier and achieved a mean absolute error (MAE) of 4.87 weeks using cross-validation on a longitudinal dataset of 31 normal ageing rats. It was then tested on two groups of 24 rats (MAE = 9.89 weeks, correlation coefficient = 0.86): controls vs. a group under long-term environmental enrichment and dietary restriction (EEDR). Using a linear mixed-effects model, BrainAGE was found to increase more slowly with chronological age in EEDR rats ( p = 0 . 015 for the interaction term). Cox re-gression showed that older BrainAGE at 5 months was associated with higher mortality risk ( p = 0 . 03 ). Our findings suggest that lifestyle-related prevention approaches may help to slow down brain ageing in rodents and the potential of BrainAGE as a predictor of age-related health outcomes.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 62

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy