SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1616 301X srt2:(2020-2024)"

Sökning: L773:1616 301X > (2020-2024)

  • Resultat 1-10 av 166
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmed, Bilal, et al. (författare)
  • i-MXenes for Energy Storage and Catalysis
  • 2020
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 30:47
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2017, a new family of in-plane, chemically-ordered quaternary MAX phases, coined i-MAX, has been reported since 2017. The first i-MAX phase, (Mo2/3Sc1/3)(2)AlC, garnered significant research attention due to the presence of chemically ordered Sc within the Mo-dominated M layer, and the facilitated removal of both Al and Sc upon etching, resulting in 2D i-MXene, Mo1.33C, with ordered divacancies. The i-MXene renders an exceptionally low resistivity of 33.2 mu omega m(-1) and a high volumetric capacitance of approximate to 1150 F cm(-3). This discovery has been followed by the synthesis of, to date, 32 i-MAX phases and 5 i-MXenes, where the latter have shown potential for applications including, but not limited to, energy storage and catalysis. Herein, fundamental investigations of i-MAX phases and i-MXenes, along with their applicability in supercapacitive and catalytic applications, are reviewed. Moreover, recent results on ion intercalation and post-etching treatment of Mo1.33C are presented. The charge storage performance can also be tuned by forming MXene hydrogel and through inert atmosphere annealing, where the latter renders a superior volumetric capacitance of approximate to 1635 F cm(-3). This report demonstrates the potential of the i-MXene family for catalytic and energy storage applications, and highlights novel research directions for further development and successful employment in practical applications.
  •  
2.
  • An, Dong, et al. (författare)
  • NIR-II Responsive Inorganic 2D Nanomaterials for Cancer Photothermal Therapy : Recent Advances and Future Challenges
  • 2021
  • Ingår i: Advanced Functional Materials. - : John Wiley & Sons. - 1616-301X .- 1616-3028. ; 31:32
  • Forskningsöversikt (refereegranskat)abstract
    • Non-invasive cancer photothermal therapy (PTT) is a promising replacement for traditional cancer treatments. The second near-infrared region induced PTT (NIR-II PTT, 1000-1500 nm) with less energy dissipation has been developed for deeper-seated tumor treatment in recent years compared with the traditional first near-infrared light (750-1000 nm). In addition, the use of emerging inorganic 2D nanomaterials as photothermal agents (PTAs) further enhanced PTT efficiency due to their intrinsic photothermal properties. NIR-II light stimulated inorganic 2D nanomaterials for PTT is becoming a hot topic in both academic and clinical fields. This review summarizes the categories, structures, and photothermal conversion properties of inorganic 2D nanomaterials for the first time. The recent synergistic strategies of NIR-II responsive PTT combined with other treatment approaches including chemotherapy, chemodynamic therapy, photodynamic therapy, radiotherapy are summarized. The future challenges and perspectives on these 2D nanomaterials for NIR-II responsive PTT systems construction are further discussed.
  •  
3.
  • Arndt, Tina, et al. (författare)
  • Engineered Spider Silk Proteins for Biomimetic Spinning of Fibers with Toughness Equal to Dragline Silks
  • 2022
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 32:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Spider silk is the toughest fiber found in nature, and bulk production of artificial spider silk that matches its mechanical properties remains elusive. Development of miniature spider silk proteins (mini-spidroins) has made large-scale fiber production economically feasible, but the fibers’ mechanical properties are inferior to native silk. The spider silk fiber's tensile strength is conferred by poly-alanine stretches that are zipped together by tight side chain packing in β-sheet crystals. Spidroins are secreted so they must be void of long stretches of hydrophobic residues, since such segments get inserted into the endoplasmic reticulum membrane. At the same time, hydrophobic residues have high β-strand propensity and can mediate tight inter-β-sheet interactions, features that are attractive for generation of strong artificial silks. Protein production in prokaryotes can circumvent biological laws that spiders, being eukaryotic organisms, must obey, and the authors thus design mini-spidroins that are predicted to more avidly form stronger β-sheets than the wildtype protein. Biomimetic spinning of the engineered mini-spidroins indeed results in fibers with increased tensile strength and two fiber types display toughness equal to native dragline silks. Bioreactor expression and purification result in a protein yield of ≈9 g L−1 which is in line with requirements for economically feasible bulk scale production.
  •  
4.
  •  
5.
  • Asawa, Kenta, et al. (författare)
  • Cell Surface Functionalization with Heparin-Conjugated Lipid to Suppress Blood Activation
  • 2021
  • Ingår i: Advanced Functional Materials. - : John Wiley & Sons. - 1616-301X .- 1616-3028. ; 31:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Organ transplantation leads to damage of the endothelial glycocalyx of the transplanted organ, and the activated endothelial surface induces thromboinflammation. The result is dysfunction of the transplanted organ, known as ischemia reperfusion injury (IRI). Long-term graft survival strongly depends on the regulation of IRI. Here the aim is to reconstruct the glycocalyx to regulate blood activation during IRI. Heparin-conjugated lipid (fHep-lipid) is synthesized with 0.6, 1.8, 2.7, 4.5, or 8.0 fragmented heparins per lipid to compare their anticoagulation activity. First, liposome and cells are modified with each fHep-lipid and the surface properties are evaluated. Then the hemocompatibility of the modified human mesenchymal stem cells (hMSCs) is examined in a loop model using human blood. The antithrombin-binding capacity and anti-factor Xa activity of the fHep-lipids depend on the number of conjugated heparins, with efficacy increasing with increasing number of heparins. The modified liposomes are highly negatively charged and show strong anti-factor Xa activity. In addition, the cell surfaces of human erythrocytes and hMSCs can be uniformly modified with fHep-lipid. The whole blood studies reveal that fHep-lipid on hMSCs can prevent generation of thrombin-antithrombin complexes, coagulation markers, and platelet aggregation, whereas unmodified hMSCs trigger activation of the platelet and coagulation systems.
  •  
6.
  • Aziz, Shazed, et al. (författare)
  • Fast and High-Strain Electrochemically Driven Yarn Actuators in Twisted and Coiled Configurations
  • 2021
  • Ingår i: Advanced Functional Materials. - : John Wiley & Sons. - 1616-301X .- 1616-3028. ; 31:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Commercially available yarns are promising precursor for artificial muscles for smart fabric-based textile wearables. Electrochemically driven conductive polymer (CP) coated yarns have already shown their potential to be used in smart fabrics. Unfortunately, the practical application of these yarns is still hindered due to their slow ion exchange properties and low strain. Here, a method is demonstrated to morph poly-3,4-ethylenedioxythiophene:poly-styrenesulfonate (PEDOT:PSS) coated multifilament textile yarns in highly twisted and coiled structures, providing >1% linear actuation in <1 s at a potential of +0.6 V. A potential window of +0.6 V and -1.2 V triggers the fully reversible actuation of a coiled yarn providing >1.62% strain. Compared to the untwisted, regular yarns, the twisted and coiled yarns produce >9x and >20x higher strain, respectively. The strain and speed are significantly higher than the maximum reported results from other electrochemically operated CP yarns. The yarn’s actuation is explained by reversible oxidation/reduction reactions occurring at CPs. However, the helical opening/closing of the twisted or coiled yarns due to the torsional yarn untwisting/retwisting assists the rapid and large linear actuation. These PEDOT:PSS coated yarn actuators are of great interest to drive smart textile exoskeletons.
  •  
7.
  • Bainsla, Lakhan, et al. (författare)
  • Ultrathin Ferrimagnetic GdFeCo Films with Low Damping
  • 2022
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 32:23, s. 2111693-
  • Tidskriftsartikel (refereegranskat)abstract
    • Ferromagnetic materials dominate as the magnetically active element in spintronic devices, but come with drawbacks such as large stray fields and low operational frequencies. Compensated ferrimagnets provide an alternative as they combine the ultrafast magnetization dynamics of antiferromagnets with a ferromagnet-like spin-orbit-torque behavior. However, to use ferrimagnets in spintronic devices their advantageous properties must be retained also in ultrathin films (t < 10 nm). In this study, ferrimagnetic Gdx(Fe87.5Co12.5)1−x thin films in the thickness range t = 2–20 nm are grown on high resistance Si(100) substrates and studied using broadband ferromagnetic resonance measurements at room temperature. By tuning their stoichiometry, a nearly compensated behavior is observed in 2 nm Gdx(Fe87.5Co12.5)1−x ultrathin films for the first time, with an effective magnetization of (Formula presented.) = 0.02 T and a low effective Gilbert damping constant of α = 0.0078, comparable to the lowest values reported so far in 30 nm films. These results show great promise for the development of ultrafast and energy efficient ferrimagnetic spintronic devices.
  •  
8.
  • Cao, W., et al. (författare)
  • In Situ Study of FePt Nanoparticles-Induced Morphology Development during Printing of Magnetic Hybrid Diblock Copolymer Films
  • 2022
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 32:4, s. 2107667-
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of magnetic hybrid films containing diblock copolymers (DBCs) and magnetic nanoparticles (NPs) by printing is a highly promising method for scalable and low-cost fabrication. During printing, the drying and arrangement kinetics of the DBC and magnetic NPs play an important role in the film formation concerning morphology and magnetic properties. In this study, the morphology evolution of ultrahigh molecular weight DBC polystyrene-block-poly(methyl methacrylate) and magnetic iron platinum (FePt) NPs is investigated with grazing-incidence small-angle X-ray scattering (GISAXS) in situ during printing. For comparison, a pure DBC film is printed without FePt NPs under the same conditions. The GISAXS data suggest that the addition of NPs accelerates the solvent evaporation, leading to a faster film formation of the hybrid film compared to the pure film. As the solvent is almost evaporated, a metastable state is observed in both films. Compared with the pure film, such a metastable state continues longer during the printing process of the hybrid film because of the presence of FePt NPs, which inhibits the reorganization of the DBC chains. Moreover, investigations of the field-dependent magnetization and temperature-dependent susceptibility indicate that the printed hybrid film is superparamagnetic, which makes this film class promising for magnetic sensors.
  •  
9.
  • Cao, Zhejian, 1991-, et al. (författare)
  • Porous Strontium Chloride Scaffolded by Graphene Networks as Ammonia Carriers
  • 2021
  • Ingår i: Advanced Functional Materials. - : John Wiley & Sons. - 1616-301X .- 1616-3028. ; 31:30
  • Tidskriftsartikel (refereegranskat)abstract
    • Strontium chloride (SrCl2) as ammonia (NH3) carriers has been widely exploited due to its high ammonia uptake capacity and low energy penalty for ammonia release. However, the dramatic volume swing during absorption–desorption cycles, from SrCl2 to Sr(NH3)8Cl2 to SrCl2, imposes a challenge to structure SrCl2 for ammonia storage applications. Herein, a novel porous SrCl2 structure with SrCl2 loading up to 96 wt%, scaffolded by reduced graphene oxide (rGO) networks is reported. The optimized porous SrCl2‐rGO composite with 80 wt% SrCl2 loading maintains the macro‐ and micro‐structure accommodating the volume swing during ammonia absorption–desorption cycles without disintegration, whereas structured SrCl2 pellets disintegrates directly after the first cycle of NH3 absorption. The structured porous 80 wt% SrCl2‐rGO composite demonstrates rapid absorption–desorption kinetics, 140% faster in absorption and 540% faster in desorption compared with pure SrCl2 pellet. The enhancement of the surface area and the presence of SrCl2 particles in the pores of rGO networks result in a robust and stable structure offering rapid ammonia absorption–desorption kinetics while countermining the volume swing by self‐adjusting “breathing.”
  •  
10.
  • Chen, Hang, et al. (författare)
  • Modulating Carrier Kinetics in BiVO4 Photoanodes through Molecular Co4O4 Cubane Layers
  • 2023
  • Ingår i: Advanced Functional Materials. - : Wiley-VCH Verlagsgesellschaft. - 1616-301X .- 1616-3028. ; 33:48
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the role and immobilization of molecular catalysts on photoelectrodes is essential to use their full potential for efficient solar fuel generation. Here, a CoII4O4 cubane with proven catalytic performance and an active H2O─Co2(OR)2─OH2 edge-site moiety is immobilized on BiVO4 photoanodes through a versatile layer-by-layer assembly strategy. This delivers a photocurrent of 3.3 mA cm−2 at 1.23 VRHE and prolonged stability. Tuning the thickness of the Co4O4 layer has remarkable effects on photocurrents, dynamic open circuit potentials, and charge carrier behavior. Comprehensive-time and frequency-dependent perturbation techniques are employed to investigate carrier kinetics in transient and pseudo-steady-state operando conditions. It is revealed that the Co4O4 layer can prolong carrier lifetime, unblock kinetic limitations at the interface by suppressing recombination, and enhance charge transfer. Additionally, its flexible roles are identified as passivation/hole trapping/catalytic layer at respective lower/moderate/higher potentials. These competing functions are under dynamic equilibrium, which fundamentally defines the observed photocurrent trends.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 166
Typ av publikation
tidskriftsartikel (158)
forskningsöversikt (8)
Typ av innehåll
refereegranskat (158)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Roth, Stephan V. (8)
Müller, Christian, 1 ... (7)
Xiong, Shizhao, 1985 (6)
Fabiano, Simone (4)
Rising, Anna (4)
Zheng, Kaibo (3)
visa fler...
Zozoulenko, Igor (3)
Vomiero, Alberto (3)
Tang, Shi (3)
Edman, Ludvig, 1967- (3)
Ågren, Hans (3)
Matic, Aleksandar, 1 ... (3)
Hwang, Jang Yeon (3)
Linares, Mathieu (3)
Brett, Calvin (3)
Li, Y. (2)
Zhang, H. (2)
Zhou, Y. (2)
Wang, Y. (2)
Fahlman, Mats (2)
Chen, W. (2)
Shi, Yijun (2)
Berggren, Magnus (2)
Mijakovic, Ivan, 197 ... (2)
Pullerits, Tõnu (2)
Liu, Xianjie (2)
Johansson, Jan (2)
Vagin, Mikhail (2)
Berggren, Magnus, Pr ... (2)
Chen, Q. (2)
Wang, Feng (2)
Pandit, Santosh, 198 ... (2)
Greco, G. (2)
Caironi, Mario (2)
Zhao, Dan (2)
Zhang, Wei (2)
Sun, Yang Kook (2)
Söderberg, Daniel (2)
Åkerman, Johan, 1970 (2)
Rosén, Johanna (2)
Malkoch, Michael, 19 ... (2)
Zeglio, Erica (2)
Betker, Marie (2)
Wang, Yu (2)
Li, N (2)
Langhammer, Christop ... (2)
Wang, Gang (2)
Nugroho, Ferry, 1986 (2)
Wågberg, Lars, 1956- (2)
Zakharov, Alexei A. (2)
visa färre...
Lärosäte
Linköpings universitet (43)
Kungliga Tekniska Högskolan (35)
Chalmers tekniska högskola (29)
Uppsala universitet (25)
Karolinska Institutet (18)
Lunds universitet (15)
visa fler...
RISE (10)
Stockholms universitet (9)
Luleå tekniska universitet (8)
Göteborgs universitet (7)
Umeå universitet (5)
Sveriges Lantbruksuniversitet (3)
Örebro universitet (1)
Jönköping University (1)
Mittuniversitetet (1)
Linnéuniversitetet (1)
Högskolan i Borås (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (166)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (130)
Teknik (47)
Medicin och hälsovetenskap (15)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy