SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1674 2052 OR L773:1752 9867 srt2:(2015-2019)"

Sökning: L773:1674 2052 OR L773:1752 9867 > (2015-2019)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gentry, Matthew, et al. (författare)
  • A Structural Bisulfite Assay to Identify DNA Cruciforms
  • 2016
  • Ingår i: Molecular Plant. - : Elsevier BV. - 1674-2052 .- 1752-9867. ; 9, s. 1328-1336
  • Tidskriftsartikel (refereegranskat)abstract
    • In the half century since the discovery of the double-helix structure of DNA, it has become increasingly clear that DNA functionality is based on much more than its sequence in a double-helical structure. Further advances have highlighted the importance of additional aspects of DNA structure: its packaging in the higher order chromatin structure, positioning of nucleosomes along the DNA, and the occurrence of non-helical DNA structures. Of these, the latter has been problematic to prove empirically. Here, we describe a method that uses non-denaturing bisulfite sequencing on isolated Arabidopsis thaliana nuclei to determine the location of cytosines positioned outside the double helix as a result of non-B-form DNA structures. We couple this with computational methods and S1 nuclease digest to reliably identify stable, non-B-form, cruciform structures. This enables us to identify a palindrome in the promoter of FLOWERING LOCUS T that forms a stable non-B-form structure. The stronger conservation of the ability to form a non-helical secondary structure than of the sequence suggests that this structure is biologically relevant.
  •  
2.
  •  
3.
  • Jin, Y. K., et al. (författare)
  • A Dual-Promoter Gene Orchestrates the Sucrose-Coordinated Synthesis of Starch and Fructan in Barley
  • 2017
  • Ingår i: Molecular Plant. - : Elsevier BV. - 1674-2052 .- 1752-9867. ; 10:12, s. 1556-1570
  • Tidskriftsartikel (refereegranskat)abstract
    • Sequential carbohydrate synthesis is important for plant survival because it guarantees energy supplies for growth and development during plant ontogeny and reproduction. Starch and fructan are two important carbohydrates in many flowering plants and in human diets. Understanding this coordinated starch and fructan synthesis and unraveling how plants allocate photosynthates and prioritize different carbohydrate synthesis for survival could lead to improvements to cereals in agriculture for the purposes of greater food security and production quality. Here, we report a system from a single gene in barley employing two alternative promoters, one intronic/exonic, to generate two sequence-overlapping but functionally opposing transcription factors, in sensing sucrose, potentially via sucrose/glucose/fructose/trehalose 6-phosphate signaling. The system employs an autoregulatory mechanism in perceiving a sucrose-controlled trans activity on one promoter and orchestrating the coordinated starch and fructan synthesis by competitive transcription factor binding on the other promoter. As a case in point for the physiological roles of the system, we have demonstrated that this multitasking system can be exploited in breeding barley with tailored amounts of fructan to produce healthy food ingredients. The identification of an intron/exon-spanning promoter in a hosting gene, resulting in proteins with distinct functions, adds to the complexity of plant genomes. ERYSTWYTH, WALES, V123, P453
  •  
4.
  •  
5.
  • Lakehal, Abdellah, et al. (författare)
  • A Molecular Framework for the Control of Adventitious Rooting by TIR1/AFB2-Aux/IAA-Dependent Auxin Signaling in Arabidopsis
  • 2019
  • Ingår i: Molecular Plant. - : Elsevier. - 1674-2052 .- 1752-9867. ; 12:11, s. 1499-1514
  • Tidskriftsartikel (refereegranskat)abstract
    • In Arabidopsis thaliana, canonical auxin-dependent gene regulation is mediated by 23 transcription factors from the AUXIN RESPONSE FACTOR (ARF) family that interact with auxin/indole acetic acid repressors (Aux/IAAs), which themselves form co-receptor complexes with one of six TRANSPORT INHIBITOR1/AUXIN-SIGNALLING F-BOX (TIR1/AFB) proteins. Different combinations of co-receptors drive specific sensing outputs, allowing auxin to control a myriad of processes. ARF6 and ARF8 are positive regulators of adventitious root initiation upstream of jasmonate, but the exact auxin co-receptor complexes controlling the transcriptional activity of these proteins has remained unknown. Here, using loss-of-function mutants we show that three Aux/IAA genes, IAA6, IAA9, and IAA17, act additively in the control of adventitious root (AR) initiation. These three IAA proteins interact with ARF6 and/or ARF8 and likely repress their activity in AR development. We show that TIR1 and AFB2 are positive regulators of AR formation and TIR1 plays a dual role in the control of jasmonic acid (JA) biosynthesis and conjugation, as several JA biosynthesis genes are up-regulated in the tir1-1 mutant. These results lead us to propose that in the presence of auxin, TIR1 and AFB2 form specific sensing complexes with IAA6, IAA9, and/or IAA17 to modulate JA homeostasis and control AR initiation.
  •  
6.
  •  
7.
  • Liu, Qinsong, et al. (författare)
  • Vacuole Integrity Maintained by DUF300 Proteins Is Required for Brassinosteroid Signaling Regulation
  • 2018
  • Ingår i: Molecular Plant. - : Cell Press. - 1674-2052 .- 1752-9867. ; 11:4, s. 553-567
  • Tidskriftsartikel (refereegranskat)abstract
    • Brassinosteroid (BR) hormone signaling controls multiple processes during plant growth and development and is initiated at the plasma membrane through the receptor kinase BRASSINOSTEROID INSENSITIVE1 (BRI1) together with co-receptors such as BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1). BRI1 abundance is regulated by endosomal recycling and vacuolar targeting, but the role of vacuole-related proteins in BR receptor dynamics and BR responses remains elusive. Here, we show that the absence of two DUF300 domain-containing tonoplast proteins, LAZARUS1 (LAZ1) and LAZ1 HOMOLOG1 (LAZ1H1), causes vacuole morphology defects, growth inhibition, and constitutive activation of BR signaling. Intriguingly, tonoplast accumulation of BAK1 was substantially increased and appeared causally linked to enhanced BRI1 trafficking and degradation in laz1 laz1h1 plants. Since unrelated vacuole mutants exhibited normal BR responses, our findings indicate that DUF300 proteins play distinct roles in the regulation of BR signaling by maintaining vacuole integrity required to balance subcellular BAK1 pools and BR receptor distribution.
  •  
8.
  • Melnyk, Charles (författare)
  • Wound-Induced Shoot-to-Root Relocation of JA-Ile Precursors Coordinates Arabidopsis Growth
  • 2019
  • Ingår i: Molecular Plant. - : Elsevier BV. - 1674-2052 .- 1752-9867. ; 12, s. 1383-1394
  • Tidskriftsartikel (refereegranskat)abstract
    • Multicellular organisms rely on the movement of signaling molecules across cells, tissues, and organs to communicate among distal sites. In plants, localized leaf damage activates jasmonic acid (JA)-dependent transcriptional reprogramming in both harmed and unharmed tissues. Although it has been indicated that JA species can translocate from damaged into distal sites, the identity of the mobile compound(s), the tissues through which they translocate, and the effect of their relocation remain unknown. Here, we found that following shoot wounding, the relocation of endogenous jasmonates through the phloem is essential to initiate JA signaling and stunt growth in unharmed roots of Arabidopsis thaliana. By employing grafting experiments and hormone profiling, we uncovered that the hormone precursor cis-12-oxo-phytodienoic acid (OPDA) and its derivatives, but not the bioactive JA-Ile conjugate, translocate from wounded shoots into undamaged roots. Upon root relocation, the mobile precursors cooperatively regulated JA responses through their conversion into JA-Ile and JA signaling activation. Collectively, our findings demonstrate the existence of long-distance translocation of endogenous OPDA and its derivatives, which serve as mobile molecules to coordinate shoot-to-root responses, and highlight the importance of a controlled redistribution of hormone precursors among organs during plant stress acclimation.
  •  
9.
  • Moreno Romero, Jordi, et al. (författare)
  • Arabidopsis SWC4 Binds DNA and Recruits the SWR1 Complex to Modulate Histone H2A.Z Deposition at Key Regulatory Genes
  • 2018
  • Ingår i: Molecular Plant. - : Elsevier BV. - 1674-2052 .- 1752-9867. ; 11, s. 815-832
  • Tidskriftsartikel (refereegranskat)abstract
    • Deposition of the H2A.Z histone variant by the SWR1 complex (SWR1-C) in regulatory regions of specific loci modulates transcription. Characterization of mutations in Arabidopsis thaliana homologs of yeast SWR1-C has revealed a role for H2A.Z exchange in a variety of developmental processes. Nevertheless, the exact composition of plant SWR1-C and how it is recruited to target genes remains to be established. Here we show that SWC4, the Arabidopsis homolog of yeast SANT domain protein Swc4/Eaf2, is a DNA-binding protein that interacts with SWR1-C subunits. We demonstrate that the swc4-1 knockout mutant is embryolethal, while SWC4 RNAi knockdown lines display pleiotropic phenotypic alterations in vegetative and reproductive traits, including acceleration of flowering time, indicating that SWC4 controls post-embryonic processes. Transcriptomic analyses and genome-wide profiling of H2A.Z indicate that SWC4 represses transcription of a number of genes, including the floral integrator FT and key transcription factors, mainly by modulating H2A.Z deposition. Interestingly, SWC4 silencing does not affect H2A.Z deposition at the FLClocus nor expression of this gene, a master regulator of flowering previously shown to be controlled by SWR1-C. Importantly, we find that SWC4 recognizes specific AT-rich DNA elements in the chromatin regions of target genes and that SWC4 silencing impairs SWR1-C binding at FT. Collectively, our data suggest that SWC4 regulates plant growth and development by aiding SWR1-C recruitment and modulating H2A.Z deposition.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
Typ av publikation
tidskriftsartikel (14)
Typ av innehåll
refereegranskat (14)
Författare/redaktör
Novák, Ondřej (2)
Glaser, Elzbieta (2)
Le Hir, Rozenn (2)
Brodelius, Peter E (2)
Andersson, Roger (1)
Lehtiö, Janne (1)
visa fler...
Zhou, Yan (1)
Wang, Fei (1)
Liu, C. L. (1)
Bako, Laszlo (1)
Branca, Rui M M (1)
Van Aken, Olivier (1)
Bellini, Catherine (1)
Ranjan, Alok (1)
Lakehal, Abdellah (1)
Bellini, Catherine, ... (1)
Sandström, Corine (1)
Millar, A Harvey (1)
Whelan, James (1)
Wollman, Francis-And ... (1)
Olsson, Helena (1)
Malnoë, Alizée (1)
Åman, Per (1)
Sun, Chuanxin (1)
Fransson, Gunnel (1)
Vain, Thomas (1)
Robert, Stephanie (1)
Sitbon, Folke (1)
Liu, Meng (1)
Vilaine, Françoise (1)
Klemens, Patrick A W (1)
Neuhaus, H Ekkehard (1)
Dinant, Sylvie (1)
Wang, Yan (1)
Köhler, Claudia (1)
Kanagarajan, Selvara ... (1)
Cavel, Emilie (1)
Gutierrez, Laurent (1)
Melnyk, Charles (1)
Santos-González, Jua ... (1)
Moreno Romero, Jordi (1)
Li, Ling (1)
Pacurar, Daniel I (1)
Perrone, Irene (1)
Huang, Shaobai (1)
Viotti, Corrado (1)
Carrie, Chris (1)
Hofius, Daniel (1)
Lundgren, Anneli (1)
Jansson, C (1)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (9)
Umeå universitet (5)
Göteborgs universitet (2)
Stockholms universitet (2)
Linnéuniversitetet (2)
Kungliga Tekniska Högskolan (1)
visa fler...
Lunds universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Lantbruksvetenskap (3)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy