SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1687 966X OR L773:1687 9678 srt2:(2020-2023)"

Sökning: L773:1687 966X OR L773:1687 9678 > (2020-2023)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hosseini, Kimia, et al. (författare)
  • Differentiation of Human Embryonic Stem Cells into Neuron, Cholinergic, and Glial Cells
  • 2020
  • Ingår i: Stem Cells International. - : HINDAWI LTD. - 1687-9678 .- 1687-966X. ; 2020
  • Tidskriftsartikel (refereegranskat)abstract
    • Human embryonic stem cells (hESCs) are pluripotent cells, capable of differentiation into different cellular lineages given the opportunity. Derived from the inner cell mass of blastocysts in early embryonic development, the cell self-renewal ability makes them a great tool for regenerative medicine, and there are different protocols available for maintaining hESCs in their undifferentiated state. In addition, protocols for differentiation into functional human neural stem cells (hNSCs), which have the potential for further differentiation into various neural cell types, are available. However, many protocols are time-consuming and complex and do not always fit for purpose. In this study, we carefully combined, optimized, and developed protocols for differentiation of hESCs into adherent monolayer hNSCs over a short period of time, with the possibility of both expansion and freezing. Moreover, the method details further differentiation into neurons, cholinergic neurons, and glial cells in a simple, single step by step protocol. We performed immunocytochemistry, qPCR, and electrophysiology to examine the expression profile and characteristics of the cells to verify cell lineage. Using presented protocols, the creation of neuronal cultures, cholinergic neurons, and a mixed culture of astrocytes and oligodendrocytes can be completed within a three-week time period.
  •  
2.
  • Kok, ZY, et al. (författare)
  • Dental Pulp Stem Cell Heterogeneity: Finding Superior Quality "Needles" in a Dental Pulpal "Haystack" for Regenerative Medicine-Based Applications
  • 2022
  • Ingår i: Stem cells international. - : Hindawi Limited. - 1687-966X .- 1687-9678. ; 2022, s. 9127074-
  • Tidskriftsartikel (refereegranskat)abstract
    • Human dental pulp stem/stromal cells (hDPSCs) derived from the permanent secondary dentition are recognised to possess certain advantageous traits, which support their potential use as a viable source of mesenchymal stem/stromal cells (MSCs) for regenerative medicine-based applications. However, the well-established heterogeneous nature of hDPSC subpopulations, coupled with their limited numbers within dental pulp tissues, has impeded our understanding of hDPSC biology and the translation of sufficient quantities of these cells from laboratory research, through successful therapy development and clinical applications. This article reviews our current understanding of hDPSC biology and the evidence underpinning the molecular basis of their heterogeneity, which may be exploited to distinguish individual subpopulations with specific or superior characteristics for regenerative medicine applications. Pertinent unanswered questions which still remain, regarding the developmental origins, hierarchical organisation, and stem cell niche locations of hDPSC subpopulations and their roles in hDPSC heterogeneity and functions, will further be explored. Ultimately, a greater understanding of how key features, such as specific cell surface, senescence and other relevant genes, and protein and metabolic markers, delineate between hDPSC subpopulations with contrasting stemness, proliferative, multipotency, immunomodulatory, anti-inflammatory, and other relevant properties is required. Such knowledge advancements will undoubtedly lead to the development of novel screening, isolation, and purification strategies, permitting the routine and effective identification, enrichment, and expansion of more desirable hDPSC subpopulations for regenerative medicine-based applications. Furthermore, such innovative measures could lead to improved cell expansion, manufacture, and banking procedures, thereby supporting the translational development of hDPSC-based therapies in the future.
  •  
3.
  • Sheng, Renwang, et al. (författare)
  • The Application of Mechanical Stimulations in Tendon Tissue Engineering
  • 2020
  • Ingår i: Stem Cells International. - : Hindawi Publishing Corporation. - 1687-9678 .- 1687-966X. ; 2020
  • Forskningsöversikt (refereegranskat)abstract
    • Tendon injury is the most common disease in the musculoskeletal system. The current treatment methods have many limitations, such as poor therapeutic effects, functional loss of donor site, and immune rejection. Tendon tissue engineering provides a new treatment strategy for tendon repair and regeneration. In this review, we made a retrospective analysis of applying mechanical stimulation in tendon tissue engineering, and its potential as a direction of development for future clinical treatment strategies. For this purpose, the following topics are discussed; (1) the context of tendon tissue engineering and mechanical stimulation; (2) the applications of various mechanical stimulations in tendon tissue engineering, as well as their inherent mechanisms; (3) the application of magnetic force and the synergy of mechanical and biochemical stimulation. With this, we aim at clarifying some of the main questions that currently exist in the field of tendon tissue engineering and consequently gain new knowledge that may help in the development of future clinical application of tissue engineering in tendon injury.
  •  
4.
  • Wu, Ziqian, et al. (författare)
  • Identification of Functional Modules and Key Pathways Associated with Innervation in Graft Bone-CGRP Regulates the Differentiation of Bone Marrow Mesenchymal Stem Cells via p38 MAPK and Wnt6/β-Catenin
  • 2023
  • Ingår i: Stem cells international. - : Hindawi Publishing Corporation. - 1687-966X .- 1687-9678. ; 2023
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone resorption occurs after bone grafting, however, contemporaneous reconstruction of the innervation of the bone graft is a potential treatment to maintain the bone mass of the graft. The innervation of bone is an emerging research topic. To understand the potential molecular mechanisms of bone innervation after bone grafting, we collected normal iliac bone tissue as well as bone grafts with or without innervation from nine patients 1 year after surgery and performed RNA sequencing. We identified differentially expressed genes) from these samples and used the gene ontology and Kyoto Encyclopedia of Genes and Genomes databases for functional enrichment and signaling pathway analysis. In parallel, we established protein-protein interaction networks to screen functional modules. Based on bioinformatic results, we validated in vitro the osteogenic differentiation potential of rat bone marrow mesenchymal stem cells (BMMSCs) after calcitonin gene-related peptide (CGRP) stimulation and the expression of p38 MAPK and Wnt6/β-catenin pathways during osteogenesis. Our transcriptome analysis of bone grafts reveals functional modules and signaling pathways of innervation which play a vital role in the structural and functional integration of the bone graft. Simultaneously, we demonstrate that CGRP regulates the differentiation of BMMSCs through p38 MAPK and Wnt6/β-catenin.
  •  
5.
  • Zhang, Aini, et al. (författare)
  • Advances in Regulatory Strategies of Differentiating Stem Cells towards Keratocytes
  • 2022
  • Ingår i: Stem Cells International. - : Hindawi Publishing Corporation. - 1687-9678 .- 1687-966X. ; 2022
  • Forskningsöversikt (refereegranskat)abstract
    • Corneal injury is a commonly encountered clinical problem which led to vision loss and impairment that affects millions of people worldwide. Currently, the available treatment in clinical practice is corneal transplantation, which is limited by the accessibility of donors. Corneal tissue engineering appears to be a promising alternative for corneal repair. However, current experimental strategies of corneal tissue engineering are insufficient due to inadequate differentiation of stem cell into keratocytes and thus cannot be applied in clinical practice. In this review, we aim to clarify the role and effectiveness of both biochemical factors, physical regulation, and the combination of both to induce stem cells to differentiate into keratocytes. We will also propose novel perspectives of differentiation strategy that may help to improve the efficiency of corneal tissue engineering.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy